Vol. 40 No. 1 (2025): 79-vol. 40, núm. 1, enero-junio 2025
Articles

Treating equals equally and unequals unequally in one-sided matching markets

David Cantala
El Colegio de México

Published 2025-03-26

Keywords

  • one-sided matching,
  • optimal transportation theory,
  • Pareto optimality,
  • core

How to Cite

Cantala, D., & Mendoza-Palacios, S. (2025). Treating equals equally and unequals unequally in one-sided matching markets. Estudios Económicos De El Colegio De México, 40(1), 1–12. https://doi.org/10.24201/ee.v40i1.e461

Metrics

Abstract

We introduce in the one-sided assignment game by Shapley and Scarf (1974) the requirement called “Treating equals equally and unequal unequally” (TEEUU). We model an assignment as a measurable function that assigns a type of good to each type of agent. We establish: 1) a method, originated in optimal transportation theory, to find a TEEUU assignment in the core whenever it exists- by searching a Pareto optimal assignment- and 2) conditions under which a TEEUU assignment in the core always exists.

Downloads

Download data is not yet available.

References

  1. Abdulkadiroğlu, A. and T. Sönmez. 2003, School choice: A mechanism design approach, American Economic Review, 93(3): 729-747. DOI: https://doi.org/10.1257/000282803322157061
  2. Aumannn, R.J. 1964, Trading with a continuum of players, Econometrica, 32(1-2): 39-50. DOI: https://doi.org/10.2307/1913732
  3. Bridges, D.S. and G.B. Mehta. 2013. Representations of Preferences Orderings, Vol. 422, Springer.
  4. Carlier, G. 2003. Duality and existence for a class of mass transportation problems and economic applications, in S. Kusuoka and T. Maruyama (eds.), Advances in Mathematical Economics, Vol. 5, Springer. DOI: https://doi.org/10.1007/978-4-431-53979-7_1
  5. Debreu, G. 1954. Representation of a preference ordering by a numerical function, in M. Thrall, R.C. Davis, and C.H. Coombs (eds.), Decision Processes, New York, John Wiley and Sons.
  6. Echenique, F., N. Immorlica, and V. Vazirani. 2023. Online and Matching-Based Market Design, Cambridge University Press.
  7. Garg, J., T. Tröbust, and V. V. Vazirani. 2021. One-sided matching markets with endowments: equilibria and algorithms, Autonomous Agents and Multi-Agent Systems, 38: 40. DOI: https://doi.org/10.1007/s10458-024-09670-9
  8. Gretsky, N.E., J.M. Ostroy, and W.R. Zame. 1992. The nonatomic assignment model, Economic Theory, 2(1): 103-127. DOI: https://doi.org/10.1007/BF01213255
  9. Kaneko, M. and M.H. Wooders. 1986. The core of a game with a continuum of players and finite coalitions: The model and some results, Mathematical Social Science, 12(2): 105-137. DOI: https://doi.org/10.1016/0165-4896(86)90032-6
  10. Koopmans, T.C. and M. Beckmann. 1957. Assignment problems and the location of economic activities, Econometrica, 25(1): 53-76. DOI: https://doi.org/10.2307/1907742
  11. Kovalenkov, A. and M. Wooders. 2003. Aproximate cores of games and economies with clubs, Journal of Economic Theory, 110(1): 87-120. DOI: https://doi.org/10.1016/S0022-0531(03)00003-6
  12. Levin, V.L. 1983. A continuous utility theorem for closed preorders on a -compact metrizable space, Doklady Akademii Nauk, 28(3): 715-718.
  13. Levin, V.L. 2004. Optimal solutions of the Monge problem, in S. Kusuoka and T. Maruyama (eds.), Advances in Mathematical Economics, Vol. 6, Springer. DOI: https://doi.org/10.1007/978-4-431-68450-3_5
  14. Rachev, S.T. and L. Rüschendorf. 1998. Mass Transportation Problems. Volume I: Theory, Springer.
  15. Shapley, L. and H. Scarf. 1974. On cores and indivisibility, Journal of Mathematical Economics, 1(1): 23-37. DOI: https://doi.org/10.1016/0304-4068(74)90033-0