Inflation prediction in Mexico with models disaggregated by components

  • Robinson Duran Universidad de Concepción
  • Evelyn Garrido Universidad de Concepción
  • Carolina Godoy Banco Central de Chile
  • Juan de Dios Tena Università di Sassari and Universidad Carlos III
Keywords: forecasting Mexican inflation, vector error correction models, fixed effect models, dynamic factors
JEL Classification: C2, C3, C5

Abstract

This article is an empirical analysis on the optimal level of disaggregation by sectors and the best econometric strategy in order to forecast Mexican inflation. We compare different disaggregate modeling strategies based on: 1) univariate ARIMA models, 2) panel data methodology, 3) vector error correction models, and 4) dynamic common factor models. It is found that disaggregation by sectors is useful in order to forecast the Mexican inflation rate. Moreover, inflation forecasts based on panel data, vector correction models and dynamic factor models improves those obtained from simple extrapolative devices based on ARIMA models.

References

Bai, J. y S. Ng. 2002. Determining the number of factors in approximate factor models, Econometrica, 70(1): 191-221.

Bailliu, J., D. Garcés, M. Kruger y M. Messmacher. 2003. Explicación y predicción de la inflación en mercados emergentes: el caso de México, Serie documentos de investigación, núm. 2003-3, Banco de México.

Banco de México. 2011. Estadísticas, http://www.banxico.org.mx.

Beaulieu, J.J. y J.A. 1993. Seasonal unit roots in aggregate US data, Journal of Econometrics, 55: 305-328.

Box, G.E.P., G.M. Jenkins y G.C. Reinsel. 1994. Time series analysis: Forecasting and control, Prentice Hall, 3a ed., Englewood Cliffs, NJ.

Capistrán, C., C. Constandse y M. Ramos-Francia. 2010. Multi-horizon inflation forecast using dissagregated data, Economic Modelling, 27: 666-677.

Chiquiar, D., A. Noriega y M. Ramos-Francia. 2010. A time series approach to test a change in inflation persistence: The Mexican experience, Applied Economics, 42: 3067-3075.

De Mol, C., D. Giannone y L. Reichlin. 2006. Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components? CEPR Discussion Papers, n´um. 5829.

Diebold, F. y R. Mariano. 1995. Comparing predictive accuracy, Journal of Business and Economic Statistics, 13: 253-265 (publicado nuevamente en 2002, 20(1): 135-145).

Espasa, A. y R. Albacete. 2007. Econometric modelling for short-term inflation forecasting in the EMU, Journal of Forecasting, 26: 303-316.

Faust, J., J. Rogers y J. Wright. (2005). News and noise in G-7 GDP announcements, Journal of Money, Credit and Banking, 37: 403-419.

Forni, M. y M. Lippi. 2001. The generalized factor model: Representation theory, Econometric Theory, 17: 1113-1141.

Franses, P.H. 1991. Seasonality, nonstationarity and the forecasting of monthly time series, International Journal of Forecasting, 7: 199-208.

Giacomini, R. y H. White. 2006. Tests of conditional predictive ability, Econometrica, 74(6): 1545-1578.

Godoy, C. y J.D. Tena. 2006. ¿Cuál es el nivel óptimo de desagregación para predecir el IPC chileno? Revista Economía y Administración, 67: 7-30.

Hasza, D.P. y W.A. Fuller. 1982. Testing for nonstationary parameter specifications in seasonal time series models, The Annals of Statistics, 10: 1209-1216.

Hendry, D.F. 2006. Robustifying forecasts from equilibrium-correction systems, Journal of Econometrics, 135: 399-426.

Hubrich, K. 2005. Forecasting euro area inflation: does aggregating forecasts by HICP components improve forecasts accuracy? International Journal of Forecasting, 21: 119-136.

Ibarra-Ramirez, R. 2010. Forecasting inflation in Mexico using factor models: Do disaggregated CPI data improve forecast accuracy, Serie documentos de investigación, núm. 2010-01, Banco de México.

IHS Global Insight. 2011. IHS Global Insight: Economic Forecasts, Analysis & Data for Countries & Industries, http://myinsight.ihsglobalinsight.com/servlet/cats?.

Johansen, S. 1988. Statistical analysis of cointegrating vectors, Journal of Economic Dynamics and Control, 12: 231-254.

Juselius, K. 2006. The cointegrated VAR model: Methodology and applications, Oxford University Press.

Marcelino, M., J.H. Stock y M. Watson. 2003. Macroeconomic forecasting in the euro area: country specific versus euro wide information, European Economic Reviews, 47: 1-18.

Osborn, D.R., A.P. Chui, J.P. Smith y C.R. Birchenhall. 1988. Seasonality and the order of integration for consumption, Oxford Bulletin of Economics and Statistics, 50: 361-377.

Stock, J.H. y M. Watson. 1989. New indexes of coincident and leading economic indicators, NBER Macroeconomic Annual, 4: 351-409.

Stock, J.H. y M. Watson. 1998. Asymptotically median unbiased estimation of coefficient variance in a time varying parameter model, Journal of the American Statistical Association, 93: 349-358.

Stock, J.H. y M. Watson. 1999. Forecasting inflation, Journal of Monetary Economics, 44: 293-335.

Stock, J.H. y M. Watson. 2002. Forecasting using principal components from a large number of predictors, Journal of the American Statistical Association, 97: 1167-1179.

Stock, J.H. y M. Watson. 2005. Implications of dynamic factor models for VAR analysis, NBER Working Paper Series, núm. 11467.

Tena, J.D., A. Espasa y G. Pino. 2010. Forecasting Spanish inflation using the maximum disaggregation level by sectors and geographical areas, International Regional Science Review, 33: 181-204.

West, K.D. 2006. Forecast evaluation, en G. Elliott, C.W.J. Granger y A. Timmermann (comps.), Handbook of Economic Forecasting, North Holland.

Zellner, A. y J. Tobias. 2000. A note on aggregation, disaggregation and forecasting performance, Journal of Forecasting, 19: 457-469.

Published
01-01-2012
How to Cite
DuranR., GarridoE., GodoyC., & de Dios TenaJ. (2012). Inflation prediction in Mexico with models disaggregated by components. Estudios Económicos, 27(1), 133-167. https://doi.org/10.24201/ee.v27i1.93
  • Abstract viewed - 539 times
  • PDF (Spanish) downloaded: 233 times