Publicado 2012-01-01
Palabras clave
- Predicción de la inflación,
- México,
- vectores de corrección del equilibrio,
- modelos de efectos fijos,
- factores dinámicos
Cómo citar
Resumen
Se realiza un análisis empírico sobre el nivel óptimo de desagregación sectorial y la mejor estrategia de modelización econométrica para la predicción de la inflación en México. Se comparan diferentes estrategias de modelización desagregada basadas en: 1) modelos ARIMA univariantes, 2) metodologías de datos de panel, 3) modelos de corrección del equilibrio y 4) modelos de factores dinámicos. Se encuentra que la consideración de desagregación sectorial es útil a la hora de predecir la tasa de inflación agregada en México. Es más, la predicción de la inflación basada en modelos con datos de panel, modelos de corrección del equilibrio y factores dinámicos superan a simples estrategias extrapolativas basadas en modelos ARIMA univariantes.