47-vol. 24, núm. 1, enero-junio, 2009
Artículos

Modelado de la distribución de puntajes de pobreza multidimensional: evidencia de México

Valérie Berenger
Université Nice Sophia Antipolis
Cuauhtémoc Calderón Villarreal
El Colegio de la Frontera Norte
Franck Celestini
Université Nice Sophia Antipolis

Publicado 2009-01-01

Palabras clave

  • enfoque de lógica difusa,
  • medidas de pobreza multidimensional,
  • necesidades básicas insatisfechas

Cómo citar

Berenger, V., Calderón Villarreal, C., & Celestini, F. (2009). Modelado de la distribución de puntajes de pobreza multidimensional: evidencia de México. Estudios Económicos De El Colegio De México, 24(1), 3–34. https://doi.org/10.24201/ee.v24i1.130

Métrica

Resumen

El propósito fundamental de este trabajo es aplicar al caso mexicano una nueva metodología de desarrollada por Berenger and Celestini (2006). El nuevo método se basa en la lógica de los conjuntos difusos, que establece un índice de pobreza multidimensional definido entre 0 y el infinito, para caracterizar el modo como socialmente está organizada la pobreza. Utilizamos el XII Censo general de población y vivienda, 2000, de México (INEGI). Se construye una tipología de la pobreza en México y se derivan una serie de propuestas de política económica.

 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

  1. Banerjee, A., V. M. Yakovenko, and T. di Matteo (2006). A Study of the Personal Income Distribution in Australia, Physica A, vol. 370, 54-59.
  2. Becaria, L. and A. Minujin (1988). Métodos alternativos para medir la evolución del tamaño de la pobreza, INDEC, Buenos Aires, WP, No. 6.
  3. Berenger, V. and F. Celestini (2006a) French Poverty Measures using Fuzzy Set Approaches, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 139-153.
  4. Berenger, V. and F. Celestini (2006b) Is There a Clearly Identifiable Distribution Function of Individual Poverty Scores? Journal of Income Distribution, vol. 15, 55-77.
  5. Berenger, V. and A. Verdier-Chouchane (2007). Multidimensional Measures of Well-Being: Standard of Living and Quality of Life across Countries, World Development, 35(7), 1259-1276.
  6. Betti, G. et al. (2006). Multidimensional and Longitudinal Poverty: An Integrated Fuzzy Approach, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 115-135.
  7. Boltvinik, J. (2003). Typology of Poverty Measurement Methods: Combined Methods, Comercio Exterior, 53(5), 453-465.
  8. Boltvinik, J. (1998). Poverty Measurement Methods: an Overview, UNDP Social Development and Poverty Elimination Division, Poverty Reduction Series.
  9. Boltvinik, J. and A. Damian (2003). Evolution and Features of Poverty in Mexico, Comercio Exterior, 53(6), 519-531.
  10. CEPAL (2001). Panorama social de América Latina, 2000-2001, Naciones Unidas, LCG, 21388, October, Santiago.
  11. Cerioli, A and S. Zani (1990). A Fuzzy Approach to the Measurement of Poverty, in C. Dagum and M. Zenga (eds.), Income and Wealth Distribution, Inequality and Poverty, Heidelberg, Springer-Verlag, 272-284.
  12. Chakravarty, S. R. (2006). An Axiomatic Approach to Multidimensional Poverty Measurement via Fuzzy Sets, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 49-69.
  13. Cheli, B. and A. Lemmi (1995). A Totally Fuzzy and Relative Approach to the Multidimensional Analysis of Poverty, Economic Notes, 24(1), 115-134.
  14. Chiappero-Martinetti, E. (2006). Capability Approach and Fuzzy Set Theory: Description, Aggregation and Inference Issues, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 93-112.
  15. Chiappero-Martinetti, E. (2000). A Multidimensional Assessment of Well-Being Based on Sen’s Functioning Approach, Rivista Internazionale di Scienze Sociali, 108(2), 207-232.
  16. Dagum, C. (1999). Linking the Functional and Personal Distributions of Income, in J. Silber (ed.), Handbook on Income Inequality Measurement, Boston, Kluwer Academic Publishers, 101-132.
  17. Dagum, C. and M. Costa (2004). Analysis and Measurement of Poverty: Univariate and Multivariate Approaches and their Policy Implications. A Case Study: Italy, in C. Dagum and G. Ferrari (eds.), Household Behaviour, Equivalence Scales and Well-Being, Berlin, Springer-Verlag, 221-271.
  18. Deutsch, J. and J. Silber (2006). The “Fuzzy Set” Approach to Multidimensional Poverty Analysis: Using the Shapley Decomposition to Analyze the Determinants of Poverty in Israël, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 155-172.
  19. Deutsch, J. and J. Silber (2005). Measuring Multidimensional Poverty: An Empirical Comparison of Various Approaches, Review of Income and Wealth, 51(1), 145-172.
  20. Dickes, P. (1989). Pauvreté et conditions d’existence: théories, modèles et mesures, Walferdange, CEPS/INSTEAD, Document PSELL, No. 8.
  21. Dragulescu, A. and V. M. Yakovenko (2001). Evidence for Exponential Distribution of Income in the USA, The European Physical Journal B, vol. 20, 585-589.
  22. Dubois, D. and H. Prade (1980). Fuzzy Sets and Systems: Theory and Applications, Boston, Academic Press.
  23. Fusco, A. (2007). La Pauvreté - Un Concept Multidimensionnel, L’Harmattan, coll. Esprit Economique.
  24. Hernández Laos, E. and J. Velásquez Rao (2002). Globalización, desigualdad y pobreza: lecciones de la experiencia mexicana, Mexico, UAM-Plaza y Valdés.
  25. Hicks, N. and P. Streeten (1979). Indicators of Development: The Search for a Basic Needs Yardstick, World Development, vol. 7, 568-580.
  26. INEGI (2000). XII Censo general de población y vivienda, México.
  27. Lelli, S. (2001). Factor Analysis vs. Fuzzy Sets Theory: Assessing the Influence of Different Techniques on Sen’s Functioning Approach, CES, Catholic University of Leuven, DPS 01.21.
  28. Lemmi, A. and G. Betti (2006). Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science.
  29. Lipton, M. and M. Ravallion (1995). Poverty and Policy, in J. Behrman and T. N. Srinivasan (eds.), Handbook of Development Economics, vol. 3B, Elsevier Science.
  30. López Calva, L. F. and M. Szekely (2001). Poverty in México During the 90s: Another Lost Decade? (mimeo).
  31. Mack, J. and S. Lansley (1985). Poor Britain, London, Allen and Unwin.
  32. Miceli, D. (2006). Multidimensional and Fuzzy Poverty in Switzerland, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 195-208.
  33. Mussard, S. and M. N. Pi Alperin (2007). Multidimensional Decomposition of Poverty: A Fuzzy Set Approach, Statistica & Applicazioni, v(1), 29-52.
  34. Nolan, B. and C. T. Whelan (1996). Resources, Deprivation and Poverty, Oxford, Clarendon Press.
  35. Pareto, V. (1897). Cours d’Economie Politique, reprinted in G. H. Bousquet and G. Busino (eds.), Oeuvres Complétes (1964), vol. 3, Geneve, Librairie Droz.
  36. Qizilbash, M. (2006). Philosophical Accounts of Vagueness, Fuzzy Poverty Measures and Multidimensionality, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 9-26.
  37. Qizilbash, M. (2002). A Note on the Measurement of Poverty and Vulnerability in the South African Context, Journal of International Development, vol. 14, 757-772.
  38. Rahman, T., R. C. Mittelhammer, and P. Wandschneider. (2003). Measuring the Quality of Life Across Countries: A Sensitivity Analysis of Well-Being Indices, WIDER Research Paper, 2005/06.
  39. Ram, R. (1982). Composite Indices of Physical Quality of Life, Basic Needs Fulfilment and Income: A Principal Component Representation, Journal of Development Economics, vol. 11, 227-247.
  40. Raygoza, J. (1999). La medición de la pobreza en el programa de educación, salud y alimentación, EI Trimestre Económico, LXVI (264).
  41. Sen, A. K. (1992). Inequality Reexamined, New Delhi, Harvard University Press.
  42. Sen, A. K. (1981). Poverty and Famines: An Essay on Entitlement and Deprivation, Oxford, Oxford Clarendon Press.
  43. Sen, A. K. (1980). Equality of What? in S. Murrin (ed.), Tanner Lectures on Human Values, vol. 1, Cambridge University Press, 197-220.
  44. Skoufias, E., B. Davis, and S. de la Vega (2001). Targeting the Poor in Mexico: An Evaluation of the Selection of Households for Progresa, International Food Policy Research Institute, FNCD Discussion Paper, No. 103, 1-47.
  45. Slottje, D. (1991). Measuring the Quality of Life Across Countries, The Review of Economics and Statistics, 73(4), 684-693.
  46. Sornette, D. (2000). Critical Phenomena in Natural Sciences, Berlin, Springer-Verlag.
  47. Streeten, P. (1979). Basic Needs: Premises and Promises, Journal of Policy Modelling, 1(1), 136-146.
  48. Székely, M., et al. (2000). Do We Know How Much Poverty There Is?, Inter-American Development Bank, RES, Working Paper Series, No. 437.
  49. Townsend, P. (1979). Poverty in the United Kingdom, Hardsmonsworth, Penguin Books.
  50. UNDP (2002). Human Development Report Mexico, New York, Oxford University Press.
  51. Vero, J. (2006). A Comparison of Poverty According to Primary Goods, Capabilities and Outcomes. Evidence from French School Leavers’ Surveys, in A. Lemmi and G. Betti (eds.), Fuzzy Set Approach to Multidimensional Poverty, New York, Springer Science, 211-230.
  52. World Bank (2000). World Development Report 2000-2001: Attacking poverty, Washington, Oxford University Press.
  53. World Bank (1990). World Bank Annual Report, Washington.
  54. Zadeh, L. A. (1965). Fuzzy Sets, Information and Control, vol. 8, 338-353.