Articles
Determinants of corruption in Latin America: A country-level analysis with a Bayesian approach

Published 2025-03-26
Keywords
- Corruption,
- Bayesian models,
- Latin America,
- IVBMA
How to Cite
Flores Márquez, H., & Jiménez Gómez, A. (2025). Determinants of corruption in Latin America: A country-level analysis with a Bayesian approach. Estudios Económicos De El Colegio De México, 40(1), 1–38. https://doi.org/10.24201/ee.v40i1.e459
Abstract
Corruption is a social phenomenon that has a profound effect in the Latin American region, for this reason, it is proposed to find the causes that contribute to its development. The Bayesian Model Averaging with Instrumental Variables (IVBMA) methodology is used to find robust determinants of corruption in 19 Latin American countries. 23 regressors are considered with observations from 2013 to 2020. The IVBMA carries out 8,388,608 models, in order to extract the most robust determinants. It is revealed that institutional and economic elements are better predictors of corruption in the region.
Downloads
Download data is not yet available.
References
- Acemoglu, D., S. Johnson, J.A. Robinson y P. Yared. 2008. Income and democracy, American Economic Review, 98(3): 808-842. DOI: https://doi.org/10.1257/aer.98.3.808
- Acemoglu, D. y T. Verdier. 1998. Property rights, corruption, and the allocation of talent: A general equilibrium approach, The Economic Journal, 108(450): 1381-1403. DOI: https://doi.org/10.1111/1468-0297.00347
- Apergis, N., O. Dincer y J. Payne. 2010. The relationship between corruption and income inequality in US States: Evidence from a panel cointegration and error correction model, Public Choice, 145(1-2): 125-135. DOI: https://doi.org/10.1007/s11127-009-9557-1
- Alesina, A., A. Devleeschauwer, W. Easterly, S. Kurlat y R. Wacziarg. 2003. Fractionalization, Journal of Economic Growth, 8: 155-194. DOI: https://doi.org/10.1023/A:1024471506938
- Arikan, G.G. 2004. Fiscal decentralization: A remedy for corruption?, International Tax and Public Finance, 11(2): 175-195. DOI: https://doi.org/10.1023/B:ITAX.0000011399.00053.a1
- Arin, K.P., E. Braunfels y G. Doppelhofer. 2019. Revisiting the growth effects of fiscal policy: A Bayesian model averaging approach, Journal of Macroeconomics, 62: 1-16. DOI: https://doi.org/10.1016/j.jmacro.2019.103158
- Barr, A. y D. Serra. 2010. Corruption and culture: An experimental analysis, Journal of Public Economics, 94(11): 862-869. DOI: https://doi.org/10.1016/j.jpubeco.2010.07.006
- Bhattacharyya, S. y R. Hodler. 2010. Natural resources, democracy and corruption, European Economic Review, 54(4): 608-621. DOI: https://doi.org/10.1016/j.euroecorev.2009.10.004
- Billger, S.M. y R.K. Goel. 2009. Do existing corruption levels matter in controlling corruption? Cross-country quantile regression estimates, Journal of Development Economics, 90(2): 299-305. DOI: https://doi.org/10.1016/j.jdeveco.2008.07.006
- Blażejowski, M., J. Kwiatkowski y J. Gazda. 2016. Bayesian model averaging in the studies on economic growth in the EU regions – Application of the Gretl BMA package, Economics and Sociology, 9(4): 168-175. DOI: https://doi.org/10.14254/2071-789X.2016/9-4/10
- Blażejowski, M., J. Kwiatkowski y J. Gazda. 2019. Sources of economic growth: A global perspective, Sustainability, 11(1): 1-14. DOI: https://doi.org/10.3390/su11010275
- Brademas, J. 2005. Civil Society and Corruption: Mobilizing for Reform, University Press of America.
- Braun, M. y R. Di Tella. 2004. Inflation, inflation variability, and corruption, Economics and Politics, 16(1): 77-100. DOI: https://doi.org/10.1111/j.1468-0343.2004.00132.x
- Brock, W A. y S.N. Durlauf. 2001. What have we learned from a decade of empirical research on growth? Growth empirics and reality, The World Bank Economic Review, 15(2): 229-272. DOI: https://doi.org/10.1093/wber/15.2.229
- Brosig-Koch, J., C. Helbach, A. Ockenfels y J. Weimann. 2011. Still different after all these years: Solidarity behavior in East and West Germany, Journal of Public Economics, 95(11): 1373-1376. DOI: https://doi.org/10.1016/j.jpubeco.2011.06.002
- Brunetti, A. y B. Weder. 2003. A free press is bad news for corruption, Journal of Public Economics, 87(7): 1801-1824. DOI: https://doi.org/10.1016/S0047-2727(01)00186-4
- Castañeda, V.M. 2016. Una investigación sobre la corrupción pública y sus determinantes, Revista Mexicana de Ciencias Políticas y Sociales, 61(227): 103-135. DOI: https://doi.org/10.1016/S0185-1918(16)30023-X
- Chen, L. y A.K. Aklikokou. 2021. Relating e-government development to government effectiveness and control of corruption: A cluster analysis, Journal of Chinese Governance, 6(1): 155-173. DOI: https://doi.org/10.1080/23812346.2019.1698693
- D'Agostino, G., J.P. Dunne y L. Pieroni. 2016. Corruption and growth in Africa, European Journal of Political Economy, 43: 71-88. DOI: https://doi.org/10.1016/j.ejpoleco.2016.03.002
- DeGroot, M.H. 1970. Optimal Statistical Decisions, Nueva York, McGraw Hill.
- De Viteri, A.S. y C. Bjørnskov. 2020. Constitutional power concentration and corruption: Evidence from Latin America and the Caribbean, Constitutional Political Economy, 31(4): 509-536. DOI: https://doi.org/10.1007/s10602-020-09317-3
- Dreher, A., C. Kotsogiannis y S. McCorriston. 2009. How do institutions affect corruption and the shadow economy?, International Tax and Public Finance, 16(6): 773-796. DOI: https://doi.org/10.1007/s10797-008-9089-5
- Durlauf, S.N., A. Kourtellos y C.N. Tan. 2012. Is God in the details? A reexamination of the role of religion in economic growth, Journal of Applied Econometrics, 27(7): 1059-1075. DOI: https://doi.org/10.1002/jae.1245
- Eicher, T.S. y D. J. Kuenzel. 2016. The elusive effects of trade on growth: Export diversity and economic take‐off, Canadian Journal of Economics, 49(1): 264-295. DOI: https://doi.org/10.1111/caje.12197
- Eicher, T.S., C. Henn y C. Papageorgiou. 2012. Trade creation and diversion revisited: Accounting for model uncertainty and natural trading partner effects, Journal of Applied Econometrics, 27(2): 296–321. DOI: https://doi.org/10.1002/jae.1198
- Eicher, T.S., A. Lenkoski y A.E. Raftery. 2009. Bayesian model averaging and endogeneity under model uncertainty: An application to development determinants, Working Paper No. 94, Center for Statistics and the Social Sciences University of Washington.
- Elbahnasawy, N.G. y C.F. Revier. 2012. The determinants of corruption: Cross‐country panel data analysis, The Developing Economies, 50(4): 311-333. DOI: https://doi.org/10.1111/j.1746-1049.2012.00177.x
- Epstein, G.S. y I.N. Gang. 2019. Inequality, good governance, and endemic corruption, International Tax and Public Finance, 26(5): 999-1017. DOI: https://doi.org/10.1007/s10797-019-09542-z
- Estrella, A. y F.S. Mishkin. 1998. Predicting US recessions: Financial variables as leading indicators, Review of Economics and Statistics, 80(1): 45-61. DOI: https://doi.org/10.1162/003465398557320
- Fernández, C., E. Ley y M.F. Steel. 2001. Benchmark priors for Bayesian model averaging, Journal of Econometrics, 100(2): 381-427. DOI: https://doi.org/10.1016/S0304-4076(00)00076-2
- Fisman, R. y E. Miguel. 2007. Corruption, norms, and legal enforcement: Evidence from diplomatic parking tickets, Journal of Political Economy, 115(6): 1020-1048. DOI: https://doi.org/10.1086/527495
- Freille, S., M. E. Haque y R. Kneller. 2007. A contribution to the empirics of press freedom and corruption, European Journal of Political Economy, 23(4): 838-862. DOI: https://doi.org/10.1016/j.ejpoleco.2007.03.002
- Garay, L.J. y E. Salcedo. 2018. El Gran Libro de la Corrupción en Colombia, Bogotá, Planeta.
- Gatti, R. 2004. Explaining corruption: Are open countries less corrupt?, Journal of International Development, 16(6): 851-861. DOI: https://doi.org/10.1002/jid.1115
- Glass, A. y X. Wu. 2002. Does corruption discourage foreign direct investment and innovation?, documento sin publicar.
- Gnimassoun, B. 2015. The importance of the exchange rate regime in limiting current account imbalances in sub-Saharan African countries, Journal of International Money and Finance, 53: 36-74. DOI: https://doi.org/10.1016/j.jimonfin.2014.12.012
- Grove, W.A., A. Hussey y M. Jetter. 2011. The gender pay gap beyond human capital: Heterogeneity in noncognitive skills and in labor market tastes, Journal of Human Resources, 46(4): 827-874. DOI: https://doi.org/10.1353/jhr.2011.0003
- Gupta, S., H. Davoodi y R. Alonso-Terme. 2002. Does corruption affect income inequality and poverty?, Economics of Governance, 3(1): 23-45. DOI: https://doi.org/10.1007/s101010100039
- Hamdi, H. y A. Hakimi. 2020. Corruption, FDI, and growth: An empirical investigation into the Tunisian context, The International Trade Journal, 34(4): 415-440. DOI: https://doi.org/10.1080/08853908.2019.1699481
- Hoeting, J.A., D. Madigan y A.E. Raftery. 1997. Bayesian model averaging for linear regression models, Journal of the American Statistical Association, 92(437): 179-191. DOI: https://doi.org/10.1080/01621459.1997.10473615
- Hoeting, J. A., D. Madigan, A.E. Raftery y C.T. Volinsky. 1999. Bayesian model averaging: A tutorial, Statistical Science, 14(2): 382-401. DOI: https://doi.org/10.1214/ss/1009212519
- Horváth, R. 2013. Does trust promote growth?, Journal of Comparative Economics, 41(3): 777-788. DOI: https://doi.org/10.1016/j.jce.2012.10.006
- Iwasaki, I. y T. Suzuki. 2012. The determinants of corruption in transition economies, Economics Letters, 114(1): 54-60. DOI: https://doi.org/10.1016/j.econlet.2011.08.016
- Jeffreys, H. 1998. The Theory of Probability, Oxford, Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198503682.001.0001
- Jetter, M. y C.F. Parmeter. 2015. Trade openness and bigger governments: The role of country size revisited, European Journal of Political Economy, 37: 49-63. DOI: https://doi.org/10.1016/j.ejpoleco.2014.11.001
- Jetter, M. y C.F. Parmeter. 2018. Sorting through global corruption determinants: Institutions and education matter-not culture, World Development, 109: 279-294. DOI: https://doi.org/10.1016/j.worlddev.2018.05.013
- Jong-Sung, Y. y S. Khagram. 2005. A comparative study of inequality and corruption, American Sociological Review, 70(1): 136-157. DOI: https://doi.org/10.1177/000312240507000107
- Karl, A. y A. Lenkoski. 2012. Instrumental variable Bayesian model averaging via conditional Bayes factors, ArXiv Preprint, arXiv:1202.5846.
- Kass, R.E. y A.E. Raftery. 1995. Bayes factors, Journal of the American Statistical Association, 90(430): 773-795. DOI: https://doi.org/10.1080/01621459.1995.10476572
- Kaufmann, D., A. Kraay y M. Mastruzzi. 2004. Governance matters III: Governance indicators for 1996, 1998, 2000, and 2002, World Bank Economic Review, 18(2): 253-287. DOI: https://doi.org/10.1093/wber/lhh041
- Knutsen, C.H., A. Kotsadam, E.H. Olsen y T. Wig. 2017. Mining and local corruption in Africa, American Journal of Political Science, 61(2): 320-334. DOI: https://doi.org/10.1111/ajps.12268
- Kolstad, I. y A. Wiig. 2016. Does democracy reduce corruption?, Democratization, 23(7): 1198-1215. DOI: https://doi.org/10.1080/13510347.2015.1071797
- Koop, G. 2003. Bayesian Econometrics, Chichester, John Wiley and Sons Ltd.
- Koop, G., R. León-Gonzalez y R. Strachan. 2012. Bayesian model averaging in the instrumental variable regression model, Journal of Econometrics, 171(2): 237-250. DOI: https://doi.org/10.1016/j.jeconom.2012.06.005
- Kutan A.M., T.J. Douglas y W.Q. Judge. 2007. Does Corruption Hurt Economic Development?: Evidence from Middle Eastern, North African and Latin American Countries, Illinois, University at Edwardsville.
- LaPalombara, J. 1994. Structural and institutional aspects of corruption, Social Research, 61(2): 325-350.
- La Porta, R., F. Lopez de Silanes, A. Shleifer y R. Vishny. 1999. The quality of government, Journal of Law, Economics, and Organization, 15(1): 222-279. DOI: https://doi.org/10.1093/jleo/15.1.222
- Lederman, D., N. Loayza y R. Reis. 2001. Accountability and corruption: Political institutions matter, Working Paper Series No. WPS-2708, World Bank Group. DOI: https://doi.org/10.1596/1813-9450-2708
- Leff, N. 1964. Economic development through bureaucratic corruption, American Behavioral Scientist, 8(3): 8-14. DOI: https://doi.org/10.1177/000276426400800303
- Lenkoski, A., A. Karl y A. Neudecker. 2014. IVBMA: Bayesian instrumental variable estimation and model determination via conditional bayes factors. R package version, 1, 05, https://CRAN.R-project.org/package=ivbma.
- León-Gonzalez, R. y T. Vinayagathasan. 2015. Robust determinants of growth in asian developing economies: A Bayesian panel data model averaging approach, Journal of Asian Economics, 36: 34-46. DOI: https://doi.org/10.1016/j.asieco.2014.12.001
- Levy, S. y M. Walton. 2009. No Growth Without Equity? Inequality, Interests, and Competition in Mexico, Washington DC, World Bank Publications. DOI: https://doi.org/10.1596/978-0-8213-7767-3
- Ley, E. y M.F.J. Steel. 2009. On the effect of prior assumptions in Bayesian model averaging with applications to growth regression, Journal of Applied Economics, 24(4): 651–674. DOI: https://doi.org/10.1002/jae.1057
- Lima, M.S.M. y D. Delen. 2020. Predicting and explaining corruption across countries: A machine learning approach, Government Information Quarterly, 37(1): 101407. DOI: https://doi.org/10.1016/j.giq.2019.101407
- Lipton, D., A. Werner y C. Gonçalves. 2017. Corrupción en América Latina: un balance, https://www.imf.org/es/Blogs/Articles/2017/09/21/corruption-in-latin-america-taking-stock
- Liu, C. y J.L. Mikesell. 2014. The impact of public officials, corruption on the size and allocation of US state spending, Public Administration Review, 74(3): 346-359. DOI: https://doi.org/10.1111/puar.12212
- López, N.M. 1997. Corrupción, ética y democracia, en F.J. Laporta y S. Álvarez (coords.), La Corrupción Política, Alianza.
- López-Iturriaga, F.J. y I.P. Sanz. 2017. Predicting public corruption with neural networks: An analysis of Spanish provinces, Social Indicators Research, 140: 1-24. DOI: https://doi.org/10.2139/ssrn.3075828
- Lui, F. 1985. An equilibrium queuing model of Bribery, Journal of Political Economy, 93(4): 760-781. DOI: https://doi.org/10.1086/261329
- Madigan, D., J. York y D. Allard. 1995. Bayesian graphical models for discrete data, International Statistical Review, 63: 215-232. DOI: https://doi.org/10.2307/1403615
- Masanjala, W.H. y C. Papageorgiou. 2008. Rough and lonely road to prosperity: A reexamination of the sources of growth in Africa using Bayesian model averaging, Journal of Applied Econometrics, 23(5): 671-682. DOI: https://doi.org/10.1002/jae.1020
- Mauro, P. 1995. Corruption and growth, The Quarterly Journal of Economics, 110(3): 681-712. DOI: https://doi.org/10.2307/2946696
- Melgar, N., M. Rossi y T.W. Smith. 2010. The perception of corruption in a cross-country perspective: Why are some individuals more perceptive than others?, Economia Aplicada, 14(2): 183-198. DOI: https://doi.org/10.1590/S1413-80502010000200004
- Mirestean, A. y C.G. Tsangarides. 2016. Growth determinants revisited using limited information Bayesian model averaging, Journal of Applied Econometrics, 31(1): 106-132. DOI: https://doi.org/10.1002/jae.2472
- Mo, P. 2001. Corruption and economic growth, Journal of Comparative Economics, 29(1): 66-79. DOI: https://doi.org/10.1006/jcec.2000.1703
- Moral-Benito, E. 2012. Determinants of economic growth: A Bayesian panel data approach, Review of Economics and Statistics, 94(2): 566-579. DOI: https://doi.org/10.1162/REST_a_00154
- Nielsen, F. y A. Alderson. 1995. Income inequality, development, and dualism: Results from an unbalanced cross-national panel, American Sociological Review, 60(5): 674-701. DOI: https://doi.org/10.2307/2096317
- Nieto, N. 2021. Corruption and inequality: A dangerous cocktail in Mexico, México Interdisciplinario, 10(20): 48-65.
- Pellegrini, L. y R. Gerlagh. 2004. Corruption’s effect on growth and its transmission channels, Kyklos, 57(3): 429-456. DOI: https://doi.org/10.1111/j.0023-5962.2004.00261.x
- Persson, T., G. Tabellini y F. Trebbi. 2003. Electoral rules and corruption, Journal of the European Economic Association, 1(4): 958-989. DOI: https://doi.org/10.1162/154247603322493203
- Policardo, L. y E. Carrera. 2018. Corruption causes inequality, or is it the other way around? An empirical investigation for a panel of countries, Economic Analysis and Policy, 59: 92-102. DOI: https://doi.org/10.1016/j.eap.2018.05.001
- Pulido, N.R., A.C. Poveda y J.E.M. Carvajal. 2020. Corruption and institutions: An analysis for the Colombian case, Heliyon, 6(9): e04874. DOI: https://doi.org/10.1016/j.heliyon.2020.e04874
- Ríos, V. y W.D. Wood. 2018. The Missing Reform: Strengthening the Rule of Law in Mexico, Washington DC, Woodrow Wilson Center Press.
- Sandholtz, W. y W. Koetzle. 2000. Accounting for corruption: Economic structure, democracy, and trade, International Studies Quarterly, 44(1): 31-50. DOI: https://doi.org/10.1111/0020-8833.00147
- Seldadyo, H. y J. de Haan. 2006. The determinants of corruption: A literature survey and new evidence, comunicación presentada en la conferencia de la European Public Choice Society, Turku, Finlandia, Turku School of Economics.
- Serra, D. 2006. Empirical determinants of corruption: A sensitivity analysis, Public Choice, 126(1-2): 225–256. DOI: https://doi.org/10.1007/s11127-006-0286-4
- Sheryazdanova, G., R. Nurtazina, B. Byulegenova y I. Rystina. 2020. Correlation between e-government and corruption risks in Kazakhstan, Utopía y Praxis Latinoamericana, 25(7): 41-48.
- Shleifer, A. y R. W. Vishny. 1993. Corruption, The Quarterly Journal of Economics, 108(3): 599-617. DOI: https://doi.org/10.2307/2118402
- Stanig, P. 2015. Regulation of speech and media coverage of corruption: An empirical analysis of the Mexican press, American Journal of Political Science, 59(1): 175-193. DOI: https://doi.org/10.1111/ajps.12110
- Tanzi, V. 1998. Corruption around the world: Causes, consequences, scope, and cures, IMF Working Paper No. 1998/063. DOI: https://doi.org/10.5089/9781451848397.001
- Treisman, D. 2000. The causes of corruption: A cross-national study, Journal of Public Economics, 76(3): 399-457. DOI: https://doi.org/10.1016/S0047-2727(99)00092-4
- Van Rijckeghem, C. y B. Weder. 1997. Corruption and the rate of temptation: Do low wages in the civil service cause corruption?, IMF Working Paper No. 1997/073.
- Villoria, M. y A. Ramírez. 2013. Los modelos de gobierno electrónico y sus fases de desarrollo: un análisis desde la teoría política, Gestión y Política Pública, 22(SPE): 69-103.
- Zellner, A. 1971. An Introduction to Bayesian Inference in Econometrics, Hoboken, John Wiley and Sons.
- Zellner, A. 1986. On assessing prior distributions and Bayesian regression analysis with g-prior distributions, en P. Goel y A. Zellner (eds.), Bayesian Inference and Decision Techniques: Essays in Honor of Bruno de Finetti, Amsterdam, Elsevier.
- Zeugner, S. y M. Feldkircher. 2009. Benchmark priors revisited: On adaptive shrinkage and the supermodel effect in Bayesian model averaging, IMF Working Paper No. 2009/202. DOI: https://doi.org/10.5089/9781451873498.001