Quarterly multidimensional poverty in Mexico using machine learning algorithms

  • Ratzanyel Rincón The University of British Columbia
Keywords: multidimensional poverty, machine learning, LASSO logistic regression, random forest, support vector machines
JEL Classification: C140, C8, D6, I320

Abstract

This article addresses the lack of timely information about multidimensional poverty in Mexico. Three machine learning algorithms —the LASSO logistic regression, random forest, and support vector machines— are trained with the ENIGH to find generalizable patterns of multidimensional poverty in the raw data. The fitted models are used to classify each individual in the ENOE as poor or non-poor to obtain aggregated poverty rates on a quarterly basis. These estimates are closer to the official levels of multidimensional poverty than the labor poverty measurement and provide an accurate poverty outlook more than a year ahead of the official measure.

References

Babenko, B., J. Hersh, D. Newhouse, A. Ramakrishnan, and T. Swartz. 2017. Poverty mapping using convolutional neural networks trained on high and medium resolution satellite images, with an application in Mexico, ArXiv preprint, arXiv:1711.06323.

Breiman, L. 2001. Random forests, Machine Learning, 45(1): 5-32.

Cámara de Diputados. 2004. Ley General de Desarrollo Social, https://www.diputados.gob.mx/LeyesBiblio/pdf/LGDS.pdf

Campos-Vázquez, R.M. 2013. Efectos de los ingresos no reportados en el nivel y tendencia de la pobreza laboral en México, Ensayos Revista de Economía, 32(2): 23-54.

CONEVAL. 2010. Tendencias económicas y sociales de corto plazo y el índice de la tendencia laboral de la pobreza (ITLP), https://www.coneval.org.mx/rw/resource/coneval/med_pobreza/TendencialaboralpobrezaCONEVAL.pdf.

CONEVAL. 2014. Metodología para la medición multidimensional de la pobreza en México, https://www.coneval.org.mx/Informes/Coordinacion/Publicaciones%20oficiales/MEDICION_MULTIDIMENSIONAL_SEGUNDA_EDICION.pdf.

CONEVAL. 2019. 10 años de medición de pobreza en México, avances y retos en política social, https://www.coneval.org.mx/SalaPrensa/Comunicadosprensa/Documents/2019/COMUNICADO_10_MEDICION_POBREZA_2008_2018.pdf.

CONEVAL. 2020. Información referente al índice de tendencia laboral de la pobreza al cuarto trimestre de 2019, https://www.coneval.org.mx/SalaPrensa/Comunicadosprensa/Documents/2020/Comunicado_04_ITLP_4TRIM_2019.pdf.

Cortes, C. and V. Vapnik. 1995. Support-vector networks, Machine Learning, 20(3): 273-297.

Cruz, J.A. and D.S. Wishart. 2006. Applications of machine learning in cancer prediction and prognosis, Cancer Informatics, 2: 59-77.

EQUIDE. 2021. Resultados de la encuesta de seguimiento de los efectos del COVID-19 en el bienestar de los hogares mexicanos, http://www.equide.org/wp-content/uploads/2021/06/Comunicado_Encovid_21mar.pdf.

Friedman, J., T. Hastie, and R. Tibshirani. 2010. Regularization paths for generalized linear models via coordinate descent, Journal of Statistical Software, 33(1): 1-22.

Guo, G., S.Z. Li, and K.L. Chan. 2001. Support vector machines for face recognition, Image and Vision Computing, 19(9): 631-638.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, New York, Springer.

James, G., D. Witten, R. Tibshirani, and T. Hastie. 2013. An Introduction to Statistical Learning with Applications in R, New York, Springer.

Kleinberg, J., H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan. 2018. Human decisions and machine predictions, The Quarterly Journal of Economics, 133(1): 237-293.

Lantz, B. 2015. Machine Learning with R, Second Edition, Birmingham, Packt Publishing.

McBride, L. and A. Nichols. 2018. Retooling poverty targeting using out-of-sample validation and machine learning, World Bank Economic Review, 32(3): 531-550.

Mullainathan, S. and J. Spiess. 2017. Machine learning: An applied econometric approach, Journal of Economic Perspectives, 31(2): 87–106.

Pew Research Center. 2021. The pandemic stalls growth in the global middle class, pushes poverty up sharply, https://www.pewresearch.org/global/2021/03/18/the-pandemic-stalls-growth-in-the-global-middle-class-pushes-poverty-up-sharply/.

Sohnesen, T.P. and N. Stender. 2016. Is random forest a superior methodology for predicting poverty? An empirical assessment, Poverty and Public Policy, 9(1): 118-133.

Steinwart, I. and P. Thomann. 2017. liquidSVM: A fast and versatile SVM package, ArXiv preprint, arXiv:1702.06899.

Thoplan, R. 2014. Random forests for poverty classification, International Journal of Sciences: Basic and Applied Research, 17(2): 252-259.

Welch, B.L. 1947. The generalisation of student’s problems when several different population variances are involved, Biometrika, 34(1): 28-35.

World Bank. 2015. Measuring poverty https://www.worldbank.org/en/topic/measuringpoverty.

World Bank. 2020. Poverty and Shared Prosperity 2020: Reversals of Fortune, Washington D.C., World Bank.

Published
16-12-2022
How to Cite
RincónR. (2022). Quarterly multidimensional poverty in Mexico using machine learning algorithms. Estudios Económicos, 38(1), 3-68. https://doi.org/10.24201/ee.v38i1.435
  • Abstract viewed - 204 times
  • PDF downloaded: 117 times