Nowcasting Mexico's quarterly GDP using factor models and bridge equations

  • Oscar de J. Gálvez-Soriano Banco de México/University of Houston
Keywords: forecasting, state space model, principal component analysis, monetary policy, Kalman filter, Diebold-Mariano test
JEL Classification: C32, C38, C53, E52


I evaluate five nowcasting models that I used to forecast Mexico’s quarterly GDP in the short run: a dynamic factor model (DFM), two bridge equation (BE) models and two models based on principal components analysis (PCA). The results indicate that the average of the two BE forecastsis statistically better than the rest of the models under consideration, according to the Diebold-Mariano accuracy test. Using realtime information, I show that the average of the BE models is also more accurate than the median of the forecasts provided by the analysts surveyed by Bloomberg, the median of the experts who answer Banco de México’s Survey of Professional Forecasters and the rapid GDP estimate released by INEGI.


Afifi, A., S. May, and V.A. Clark, 2012. Practical Multivariate Analysis, fifth edition, CRC Press.

Álvarez, R., M. Camacho, and G. Perez-Quiros. 2012. Finite sample performance of small versus large scale dynamic factor models, Documento de Trabajo, núm. 1204, Banco de España.

Angelini, E., G. Camba-Mendez, D. Giannone, L. Reichlin, and G. Rünstler. 2011. Short-term forecasts of euro area GDP growth, The Econometrics Journal, 14(1): C25-C44.

Baffigi, A., R. Golinelli, and G. Parigi. 2004. Bridge models to forecast the euro area GDP, International Journal of Forecasting, 20(3): 447-460.

Banbura, M., D. Giannone, M. Modugno, and L. Reichlin. 2013. Now-casting and the real-time data flow, Working Paper Series, no. 1564, European Central Bank.

Banbura, M., and M. Modugno. 2014. Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data, Journal of Applied Econometrics, 29(1): 133-160.

Barnett, W., M. Chauvet, and D. Leiva-Leon. 2016. Real-time nowcasting of nominal GDP with structural breaks, Journal of Econometrics, 191(2): 312-324.

Brockwell, P.J., and R.A. Davis. 1991. Time Series: Theory and Methods, second ed. New York: Springer.

Camacho, M., and R. Doménech. 2012. MICA-BBVA: A factor model of economic and financial indicators for short-term GDP forecasting, Journal of the Spanish Economic Association, 3(4): 475-497.

Caruso, A. 2018. Nowcasting with the help of foreign indicators: The case of Mexico, Economic Modelling, 69(C): 160-168.

Cochrane, D., and G.H. Orcutt. 1949. Application of least squares regression to relationships containing autocorrelated error terms, Journal of the American Statistical Association, 44(245): 32-61.

de Winter, J. 2011. Forecasting GDP growth in times of crisis: private sector forecasts versus statistical models, DNB Working Paper no. 320.

Dahlhaus, T., J.D. Guénette, and G. Vasishtha. 2017. Nowcasting BRIC+ M in real time, International Journal of Forecasting, 33(4): 915-935.

Delajara, M., F. Hernández and A. Rodríguez. 2016. Nowcasting Mexico’s shortterm GDP growth in real-time: A factor model versus professional forecasters, Economía, 17(1): 167-182.

Diebold, F., and R. Mariano. 1995. Comparing predictive accuracy, Journal of Business and Economic Statistics, 13(3): 253-263.

Doz, C., D. Giannone and L. Reichlin. 2012. A quasimaximum likelihood approach for large, approximate dynamic factor models, Review of Economics and Statistics, 94(4): 1014-1024.

Forni, M., D. Giannone, M. Lippi, and L. Reichlin. 2009. Opening the black box: Structural factor models with large cross sections, Econometric Theory, 25(05): 1319-1347.

Gálvez-Soriano, O.J. 2018. Forecasting the agricultural sector of Mexico, in F. Pérez et al. (eds.), Economía, Finanzas y Desarrollo Social en México, ASMIIA, pp. 42-58.

Guerrero, V., A. García, and E. Sainz. 2013. Rapid estimates of Mexico’s quarterly GDP, Journal of Official Statistics, 29(3): 397-423.

Geweke, J. 1977. The dynamic factor analysis of economic time series, in D.J. Aigner and A.S. Goldberger (eds.), Latent Variables in Socio-Economic Models, Amsterdam: North Holland.

Giannone, D., L. Reichlin, and D. Small. 2008. Nowcasting: The real-time informational content of macroeconomic data, Journal of Monetary Economics, 55: 665-676.

Hamilton, J.D. 1994a. State-space models, in R.F. Engel and D.L. McFadden (eds.), Handbook of Econometrics, Amsterdam: Elsevier, pp. 3039-3080.

Hamilton, J.D. 1994b. Time Series Analysis, Princeton University Press.

Harvey, A.C. 1989. Forecasting Structural Time Series Models and the Kalman Filter, Cambridge: Cambridge University Press.

Harvey, D., S. Leybourne, and P. Newbold. 1997. Testing the equality of prediction mean squared errors, International Journal of Forecasting, 13(2): 281-291.

Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components, Journal of Educational Psychology, 24(6): 417-441.

Kaiser, H.F. 1958. The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23(3): 187-200.

Kalman, R.E. 1960. A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82(1): 35-45.

Klein, L.R., and Sojo, E. 1989. Combinations of high and low frequency data in macroeconometric models, in L.R. Klein and J. Marquez (eds.), Economics in Theory and Practice: An Eclectic Approach, Norwell, MA: Kluwer Academic Publishers, pp. 3-16.

Liu, P., T. Matheson, and R. Romeu. 2012. Real-time forecasts of economic activity for Latin American economies, Economic Modelling, 29(4): 1090-1098.

Lucas, R.E., Jr. 1976. Econometric policy evaluation: A critique, Carnegie-Rochester Conference Series on Public Policy, 1: 19-46.

Maddala, G.S., and I. Kim. 1998. Unit Roots, Cointegration, and Structural Change, Cambridge: Cambridge University Press.

Pearson, K. 1901. On lines and planes of closest fit to systems of points in space, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11): 559-572.

Rünstler, G., and F. Sédillot. 2003. Short-term estimates of euro area real GDP by means of monthly data, Working Paper Series, 276, European Central Bank.

Rünstler, G., K. Barhoumi, S. Benk, R. Cristadoro, A. Reijer, A. Jakaitiene, P. Jelonk, A. Rua, K. Ruth, and C. van Nieuwenhuyze. 2009. Short-term forecasting of GDP using large datasets: a real-time forecast evaluation exercise, Journal of Forecasting, 28(7): 595-611.

Sánchez, I., and D. Peña. 2001. Properties of predictors in overdifferenced nearly nonstationary autoregression, Journal of Time Series Analysis, 22(1): 45-66.

Stock, J.H., and M.W. Watson. 1988. A probability model of the coincident economic indicators, NBER Working Paper Series, no. 2772.

Stock, J.H., and M.W. Watson. 1989. New indexes of coincident and leading economic indicators, in O.J. Blanchard and S. Fischer (eds.), NBER Macroeconomics Annual 1989, volume 4, Cambridge: MIT Press, pp. 351-394.

Stock, J.H., and M.W. Watson. 2002a. Macroeconomic forecasting using diffusion indices, Journal of Business and Economics Statistics, 20(2): 147-162.

Stock, J.H., and M.W. Watson. 2002b. Forecasting using principal components from a large number of predictors, Journal of the American Statistical Association, 97(460): 1167-1179.

Yiu, M.S., and K.K. Chow. 2011. Nowcasting Chinese GDP: Information content of economic and financial data, China Economic Journal, 3(3): 223-240


AMIA. Statistic Information. Retrieved from:

ANTAD. Information Release (Comunicado de Prensa ANTAD). Retrieved from:

Banco de México. Economic Information System (Sistema de Información Económica, SIE). Retrieved from:

Banco de México. Survey of Professional Forecasters (Encuestas sobre las expectativas de los especialistas en economía del sector privado). Retrieved from(Encuestas):

Bloomberg. Forecasts of quarterly Mexican GDP. Retrieved from (BloombergTerminal):

CFE. Statistic Information. Retrieved from:

Federal Reserve Bank. Data. Retrieved from:

INEGI. Economic Information Repository (Banco de Información Económica).Retrieved from:

Pemex. Statistic Information. Retrieved from:

Sectur. Statistic Information (DataTur). Retrieved from:

How to Cite
Gálvez-SorianoO. (2020). Nowcasting Mexico’s quarterly GDP using factor models and bridge equations. Estudios Económicos, 35(2), 213-265.
  • Abstract viewed - 3255 times
  • PDF downloaded: 848 times
  • XML downloaded: 49 times