Potential product and economic cycles in Mexico, 1980.1-2006.4
DOI:
https://doi.org/10.24201/ee.v23i1.139Keywords:
potential output, output gap, business cycles, structural time series models, Kalman filterAbstract
Through the use of Structural Times Series Models we estimated: potential output, the output gap and the business cycles for the Mexican GDP (1980.1-2006.4). We found that: a) the potential output has varied sharply for two different time periods: 2.1% (1980.4-1994.4) and 3.7% (1995.4-2006.4); b) great component of seasonality: Q1 and Q3 are of slow growth (below average) and Q2 Q4 above average; c) we detected that the peaks and troughs have been progressively less pronounced since the year 2000.
Downloads
References
Baeza, W. (2004). Brecha del producto: una medida basada en modelos, Banco Central de Chile.
Ball, L. y G. Mankiw (2002). The NAIRU in Theory and Practice, Journal of Economic Perspectives, vol. 16, núm. 4.
Caloca, O., A. Cárdenas y J. Ortiz (2004). La brecha del producto en México, 1987-2004, Análisis Económico, año XIX, núm. 40.
Cerra, V. y S. Chaman (2000). Alternative Methods of Estimating Potential Output and the Output Gap: An Application to Sweden, IMF Working Paper, WP/00/59, IMF.
Cochrane, J. H. (1988). How Big is the Random Walk in GDP?, The Journal of Political Economy, vol. 96, núm. 5.
Cuevas, M. A. (2002). Potential GDP Growth in Venezuela. A Structural Time Series Approach, Policy Research WP, núm. 2826, Banco Mundial.
Doornik, J. y H. Hansen (1994). An Omnibus Test for Univariate and Multivariate Normality, Nuffield College, Oxford, (mimeo), http://www.doornik.com/research/normal2.pdf.
Durbin, J. y S. J. Koopman (2000). Time Series Analysis by State Space Methods, Oxford University Press.
Enders, W. (2004). Applied Econometric Time Series, 2a ed., Wiley & Sons Inc.
Granger, C. W. J. y P. Newbold (1974). Spurious Regressions in Econometrics, Journal of Econometrics, vol. 2, núm. 2.
Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press.
Harvey, A. C. (1989). Forecasting Structural Time Series Models and the Kalman Filter, Cambridge University Press.
Harvey, A. C. (2000). Trend Analysis, University of Cambridge.
Harvey, A. C. (2001). Testing in Unobserved Components Models, Journal of Forecasting, vol. 20, núm. 1.
Harvey, A. C. (2002). Trends, Cycles and Convergence, WP 155, Banco Central de Chile.
Harvey, A. C. (2004). Forecasting with Unobserved Components Time Series Models, en G. Elliot, C. W. J. Granger y A. G. Timmermann (eds.) Handbook of Economic Forecasting, North Holland, vol. 1.
Harvey, A. C. y S. J. Koopman (1997). Trends and Cycles in Multivariate Time Series, en C. Heij, et al. (eds.), System Dynamics in Economic and Financial Models, Wiley.
Harvey, A. C. y A. Jaeger (1993). Detrending, Stylized Facts and the Business Cycle, Journal of Applied Econometrics, vol. 8, núm. 3.
Harvey, A. C. y T. Trimbur (2001). General Model-Based Filters for Extracting Cycles and Trends in Economic Time Series, The Review of Economic and Statistics, vol. 85, núm. 2.
Haavelmo, T. (1944). The Probability Approach in Econometrics, Econometrica, 12, suplemento.
Hendry, D. F. (1980). Econometrics: Alchemy or Science?, Economica, New Series, vol. 47, núm. 188.
Hodrick, R. y E. C. Prescott (1997). Postwar US Business Cycles: An Empirical Investigation, Journal of Money, Credit, and Banking, vol. 29, núm. 1.
Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems, Journal of Basic Engineering, Transactions ASMA, Series D, 82.
Kichian, M. (1999). Measuring Potential Output within a State-Space Framework, WP 99-9, Bank of Canada, Otawa.
Koopman, S. J. et al. (2000). STAMP: Structural Time Series Analyser, Modeller and Predictor, Timberlake Consultants Ltd.
Mejía, P. y Z. Hernández (1997). ¿El PIB per cápita real de México regresa a su tendencia de largo plazo?, Documentos de Investigación, El Colegio Mexiquense.
Miller, S. (2003). Métodos alternativos para la estimación del PIB potencial: una aplicación para el caso de Perú, Estudios Económicos, núm. 10, Banco Central de la Reserva del Perú.
Morrison, G. y H. Pike (1977). Kalman Filtering Applied to Statistical Forecasting, Management Science, vol. 23, núm. 7.
Nelson, C. R. y C. I. Plosser (1982). Trends and Random Walks in Macroeconometric Time Series. Some Evidence and Implications, Journal of Monetary Economics, vol. 10, núm. 2.
Ozbek, L y U. Ozlale (2005). Employing the Extended Kalman Filter in Measuring the Output Gap, Journal of Economics Dynamics and Control, vol. 29, núm. 9.
Parkin, M. (2005). Macroeconomics, 7a edición, Person Education.
Proietti, T. (2002). Forecasting with Structural Time Series Models, DSS, Universitá di Udine (mimeo), http://www.dss.uniud.it/utenti/proietti/EcAppl/FSTSM.pdf.
Reeves, J. et al. (2000). The HP Filter. A Generalization and a New Procedure for Extracting an Empirical Cycle, Studies in Nonlinear Dynamics and Econometrics, vol. 4, núm. 1.
Romer, D. (2002). Advanced Macroeconomics, 2a edición, McGraw Hill.
Ruprah, I. (1991). Declinación o histéresis: el caso mexicano, El Trimestre Económico, vol. LVIII, núm. 4.
Steyn, I. J. (1996). State Space Models in Econometrics: A Field Guide, Universidad de Amsterdam, tesis de doctorado.
Vasconcelos C., M. Moreira y O. Teixera de Carvalho (2004). Estimating Potencial Output and the Output Gap for Brazil, Banco Central do Brasil (mimeo), http://www.anpec.org.br/encontro2004/artigos/A04A041.pdf.
Yule, G. (1926). Why Do we Some-Times Get Non-Sense-Correlations between Time Series?, Journal of the Royal Statistical Society, 89, parte I.
Zivot, E. (2005). State-space Models and the Kalman Filter, University of Washington (mimeo), http://faculty.washington.edu/ezivot/econ584/notes/statespacemodels.pdf.
Downloads
Published
How to Cite
-
Abstract512
-
PDF (Español)245