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Resumen: Este trabajo extiende los resultados de Gonzalo y Lee (1998) mediante

el estudio del comportamiento asintótico y en muestras finitas de la

prueba Engle-Granger de cointegración, cuando la función de tenden-

cia está mal especificada y omite cambios estructurales. Consideramos

quiebres de nivel o de tendencia en las variables dependiente y ex-

plicativa. Se estudian también las interacciones entre estos procesos y

procesos I(1) sin quiebres. Bajo circunstancias espećıficas los quiebres

sesgan hacia el rechazo de una relación cointegrada verdadera y el no

rechazo de una relación cointegrada inexistente. Se presenta una ilus-

tración emṕırica de los resultados.

Abstract: This paper extends Gonzalo and Lee’s (1998) results by studying the

asymptotic and finite sample behavior of the Engle-Granger test for

cointegration, under misspecification of the trend function in the form

of neglected structural breaks. We allow breaks in level and slope of

trend in both dependent and explanatory variables. We also allow these

processes to interact with I(1) processes without breaks. In some cases,

breaks bias the EG test towards both rejecting a true cointegration

relation, and not rejecting a non-existent one. Using real data, we

present an empirical illustration of the theoretical results.
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100 ESTUDIOS ECONÓMICOS

1. Introduction

Since the seminal contribution of Engle and Granger (1987), many
economic theories involving long-run relationships have been analyzed
through the concept and techniques of cointegration. These theories
include money demand relations, consumption functions, the unbi-
ased forward-market hypothesis, and purchasing power parity (see
for instance Maddala and Kim, 1998, and Enders, 2004). The basic
idea is that even though economic time series may wander in a non-
stationary way, it is possible that a linear combination of them could
be stationary. If this is the case, then there should be some long-run
equilibrium relation tying the individual variables together: this is
what Engle and Granger (1987) call cointegration. Assume that we
are interested in testing whether two time series, xt and yt, are coin-
tegrated. A preliminary requirement for cointegration is that each
series is individually I(1) nonstationary, that is, each has a unit root.
If that is the case, cointegration among them implies that a linear
combination will be stationary, that is I(0). The Engle-Granger (EG)
test proceeds in two steps. The first step involves the following static
OLS regression

yt = α̂ + δ̂xt + ût (1)

which captures any potential long-run relationship among the vari-
ables. In the second step the residuals, ût, are used in the following
Dickey-Fuller (DF) regression:

∆ût = γ̂ût−1 + ε̂t (2)

If we cannot reject the hypothesis γ = 0 then there will be a unit
root in the residuals, and therefore, the series xt and yt will not
be cointegrated. On the other hand, when the t-statistic for testing
the hypothesis γ = 0 (tγ̂) is smaller than the corresponding critical
value, the residuals will be stationary, thus indicating cointegration
between yt and xt.

1 As argued above, the EG residual-based DF t-test

1 Critical values for this test can be found in Phillips and Oularis (1990) and

MacKinnon (1991).
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for cointegration assumes that both variables have a unit root, i.e.,
they are each I(1). Gonzalo and Lee (1998) study the robustness
of this test when the variables deviate from pure I(1) processes. In
particular, they find that the test is robust (i.e. suffers almost no size
problems) to the following miss-specifications: (a) AR roots larger
than unity; (b) stochastic AR roots; (c) I(2) processes, and (d) I(1)
processes with deterministic linear trends.

This paper extends Gonzalo and Lee’s (1998) results by studying
the robustness of the EG cointegration test to structural breaks in the
deterministic trend function of the processes generating yt and xt

in model (1). Starting with Perron (1989), there is vast evidence
of breaks in the long-run deterministic component of macroeconomic
time series, including output, exchange rates, inflation and interest
rates. Such breaks can bias the result of a unit root test towards
not rejecting, when the data was generated according to a stationary
process around a broken (but otherwise linear) trend. In general,
miss-specification of the trend function biases unit root tests towards
non-rejection. See also Perron (2003).

Since establishing the order of integration of an economic time se-
ries is still an open question, the effects of potential miss-specification
on second-round tests, such as the EG test, becomes an important re-
search topic.2 The objective of this paper is thus to document the
effects of breaks in the trend function of the variables on the Engle-
Granger test for cointegration. In order to achieve this objective,
we study, using asymptotic theory and simulation experiments, the
behavior of the EG test for cointegration (CI) when the underlying
processes seem to be I(1) nonstationary, when in fact the type of the
nonstationarity in the data is due to the presence of breaks, which
induce permanent shocks in the variables, but of a deterministic na-
ture, instead of a stochastic one. We believe this is important since
the researcher may conclude in favor of unit roots in the data due to
neglected structural breaks in the trend function (as shown by Perron,
1989, and others) and thus continue with CI tests. In particular, one
of the questions we seek to answer is the following: What is the effect
of the variables being not really I(1) but I(0) with breaks on inference
based on the EG test? Even though the EG test was not intended to
detect CI among I(0) variables with breaks, but to detect CI among
“pure” I(1) variables, we believe this is a relevant question, since it
could be easy in practice to confound a broken trend with a unit root.

2 For instance, Elliot (1998) finds over-rejections of the null hypothesis of
no cointegration due to a root close to but less than one in the autoregressive

representation of individual variables.
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Furthermore, the paper goes beyond that by studying the behavior of
the EG test under combinations of I(1) processes and I(0) processes
with breaks, which have not been analyzed before in the literature.

Leybourne and Newbold (2003) present simulated evidence of the
effect on the EG test when the variables follow random walk processes
with breaks in the trend function. Their findings indicate that the
EG test suffers severe size distortions whenever there is an early break
in yt. Our asymptotic analysis provides a theoretical explanation of
their results, and is the first to present the relevant asymptotic theory
on this subject. There is some research which documents evidence on
the failure of classical cointegration tests in the presence of structural
breaks, but this evidence remains circumscribed to Monte Carlo ex-
periments. See for instance Campos, Ericsson and Hendry (1996) and
Gregory, Nason and Watt (1996). Related references include Gregory
and Hansen (1996a, 1996b), Inoue (1999) and Arai and Kurozumi
(2007). Also using simulations, Kellard (2006) finds that the Engle-
Granger test tends to find substantial spurious cointegration when
assessing market efficiency.

The relevance of our analysis stems from the well-known dif-
ficulty in distinguishing pure I(1) processes from stationary linear
trend models with structural breaks. Based on asymptotic and finite
sample results, we show that, in some cases of empirical relevance,
breaks have the effect of biasing the EG test towards both rejecting
a true cointegration relation, and not rejecting a non-existent one.
The ability of the EG test to correctly identify a cointegrated rela-
tionship depends on the break affecting the dependent variable, or
the regressor, and on the position of the break.

Contrary to the robustness results found in Gonzalo and Lee
(1998), our findings point to a warning on the use of this test un-
der possible trend breaks. This arises because equation (1) is miss-
specified in the presence of breaks. The obvious solution would be
to correctly specify equation (1), by adding a dummy variable which
captures the break, under the assumption that the change point is
known.

In particular, we show that when yt and xt in model (1)are I(1)
and cointegrated, and there is a break in the level or trend of xt, the
EG test will (correctly) indicate cointegration as the sample size grows.
However, when the break is in yt, the test does not function properly.
In some cases it rejects cointegration; and in general, results depend
on the value of the parameters in the Data Generating Process (DGP).
We also show that when yt and xt in model (1) are independently
generated from each other, the EG test statistic will diverge, if the
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variables follow linear trends with breaks.3 This occurs under I(0)
and I(1) structures for yt and xt. One implication of these results is
that, if divergence is towards minus infinity, the null hypothesis of no
cointegration will be spuriously rejected, and this size distortion will
increase with the sample size, approaching one asymptotically.

Using large sample arguments, section 2 presents results of as-
suming that variables are either cointegrated or independently gener-
ated from each other on the behavior of the EG -DF t-statistic under a
variety of DGPs. It shows that breaks do affect the test performance,
since the limit expression of the test statistic is not pivotal. Section 3
presents results from simulation experiments designed to understand
the small sample behavior of the test statistic. Section 4 presents an
empirical illustration of the results, by testing for cointegration be-
tween mortality and marriages (the Yule, 1926, data), variables which,
on a priori grounds, should bear no long-run relationship. However,
our empirical results suggest, according to our theory, that the test
rejects the null hypothesis of no cointegration, and this seems to be
the result of breaks in the variables. Last section concludes.

2. Structural breaks and the Engle-Granger test: Asymp-
totics

This section studies the asymptotic effects on the EG test of miss-
specification due to neglected breaks in the trend function, both in the
level and in the slope of the trend. The study distinguishes between a
break in the dependent variable and a break in the regressor. In some
cases, it turns out that the effect of a break on the EG test depends
on whether it affects the dependent variable, or the regressor.

The complication with the EG test, as indeed with many other
tests of cointegration, is the pre-testing problem, which arises when
identifying the order of integration of the variables. This is indeed a
problem, since there is ample evidence on the difficulty in differenti-
ating between broken trend stationary models and I(1) processes in
economic time series. This is why we study the asymptotic behavior
of the EG test under four different DGPs, widely used in applied work
in economics, including I(1) processes, and broken-trend stationary

3 A similar result is reported in Noriega and Ventosa-Santaulària (2007) in the

context of a spurious regression with independent processes, i.e., the t-statistic
of the slope parameter in model (1) diverges when variables follow linear trends

with breaks.
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processes. Table 1 summarizes the DGPs considered below for both
the dependent and the explanatory variables in model (1).

Table 1
DGP s for zt = yt, xt

DGP Model

1 MS + breaks zt = µz + θzDUzt + uzt

2 TS + breaks zt = µz + θzDUzt + βzt + γzDTzt + uzt

3 I(1) + drift zt = µz + βzt + Szt

4 I(1) + breaks zt = µz + βzt + γzDTzt + Szt

MS and TS stand for Mean Stationary and Trend Stationary, re-
spectively, DTzt =

∑t
(i=1) DUzi and DUzt are dummy variables al-

lowing changes in the trend’s slope and level respectively, that is,
DTzt = (t − Tbz

)1(t > Tbz
) and DUzt = 1(t > Tbz

), where 1(·) is the
indicator function, and Tbz

is the unknown date of the break in z, and

we define the fraction λz = Tbz
/T ∈ (0, 1). Finally, Szt =

∑t
(i=1) uzi

is a partial sum process that obeys the following assumptions (see
Phillips 1986: 313):

(a) E(Szt) = 0 for all t;

(b) Supt E|Szt|
β+ε < ∞ for some β > 2 and ε > 0;

(c)
∑

= limT→∞T−1E(SzT S
′

zT ) exists and is positive definite;

(d) {SzT }
∞

1 is strong mixing with mixing numbers αm satisfying
∑

∞

1 α
1−2/β
m < ∞.

These assumptions are quite weak, and allow SzT to be general
integrated processes, which include ARIMA (p, 1, q) models under
very general conditions on the underlying errors (see Phillips, 1986,
for further details).
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The DGPs include both deterministic as well as stochastic trend-
ing mechanisms, with 16 possible combinations of them among the
dependent and the explanatory variables. These combinations have
practical importance, given the empirical relevance of structural bre-
aks in the time series properties of many macro variables. DGP 1 is
used to model (broken-) mean stationary variables, such as real ex-
change rates, unemployment rates, inflation rates, great ratios (i.e.
output-capital ratio), and the current account. DGPs 2-4 are widely
used to model growing variables, real and nominal, such as output,
consumption, money, and prices.

2.1. The case of independent variables

We start by studying the behavior of the EG test under the assumption
that the variables are not CI, i.e. they are independent of each other.
The case of cointegrating variables is analyzed in the next subsection.4

Theorem 1 below shows that, when the DGP of at least one vari-
able includes structural breaks, the EG test does not possess a limiting
distribution, but diverges with probability approaching one asymp-
totically; on the other hand, in the absence of breaks, the test does
not diverge.

THEOREM 1. Let yt and xt be independently generated from each other
under all possible combinations of DGPs in table 1. If the estimated
residuals from equation (1) are used in regression model (2), then,
as the sample size T → ∞, the order in probability of tγ̂ in model
(2) depends on the combination of DGPs for yt and xt in table 1, as
follows:

a) tγ̂ = Op(T
1/2) for all combinations except for the case when

both yt and xt are generated by DGP 3;

b) tγ̂ = Op(1) for combination 3-3.

The proof is in the appendix.

4 All the analytic (asymptotic) results in the paper have been verified via

simulations (using Matlab).
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Remarks:

1. Part a) shows that the t-statistic diverges at rate
√

T , whether
there are structural breaks in both variables, or just in one of them.5

It is important to note that, as we discuss below, even under a suit-
able (T 1/2) normalization, which would lead to an appropriate limit-
ing distribution, the t-statistic’s distribution would depend on several
nuisance parameters, and therefore, it would not be practical to sim-
ulate it in order to derive critical values. We discuss in section 2.3.
the non-pivotal nature of the asymptotic distribution, and how it can
be very sensitive to different parameter values.

2. Given that the Engle-Granger DF-based test for cointegration
is a left tail test, result a) in theorem 1 is not enough to establish
the presence of spurious cointegration; for this the t-statistic has to
diverge to minus infinity, since divergence in the opposite direction
would imply nonrejection asymptotically. Divergence towards minus
infinity would imply that the size of the test approaches one asymp-
totically. As in the case of cointegrated variables, discussed below,
the limiting expression of tγ̂ depends on a number of unknown param-
eters in the DGP (trends, location and size of breaks, among others),
which makes it difficult to establish the direction of divergence. We
present in section 3 some simulation experiments on the behavior of
the test under different parameter values.

3. Part b) shows that when both yt and xt are independently
generated according to DGP 3 in table 1, the t-statistic does not di-
verge.

2.2. The case of cointegrated variables

We will first analyze the case of two I(1) cointegrated variables xt

and yt, where there is a break in the (otherwise) linear trend of xt.
We also study by simulation the case of multiple breaks, and find
that results remain qualitatively the same as the ones we present in
this section. We therefore concentrate on the single break case, which
allows us to economize on notation and space. We use the following
DGP for xt and yt:

5 An extreme miss-specification would occur if the researcher erroneously con-

siders both dependent and explanatory variables to be I(1), when in fact they are
stationary around a linear trend without breaks. In this unlikely event, it can be

shown that the t-statistic will also diverge, that is tγ̂=Op(T 1/2).
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xt = x0 + µxt + θxDTxt + Sxt (3)

yt = µy + βyxt + uyt (4)

In this case, deviations of xt from a linear trend with a break in
slope are nonstationary, i.e. they follow a unit root, which is, in turn,
also part of yt. Since uyt is stationary, xt and yt are cointegrated,
CI(1,1). In order to study the asymptotic behavior of the EG test
for cointegration under this DGP, the following OLS regressions are
considered,

yt = α1 + β1xt + u1t (5)

xt = α2 + β2yt + u2t (6)

and residuals ûi,t, i = 1, 2 are used in the following OLS regression,

∆ûit = γiûit−1 + εit (7)

As shown in theorem 2, the EG test will diverge to minus infinity,
thus rejecting the null hypothesis H0 : γ = 0, and (correctly) indi-
cating the presence of cointegration. In other words, the trend break
has no effect on the large sample performance of the test.

THEOREM 2. Let xt and yt be generated according to DGPs (3) and
(4), respectively. If the estimated residuals from equations (5) and
(6) are used in regression model (7), then, as the sample size T →
∞, for i = 1, 2:

a) γ̂i
p
→− 1

b) T−1/2tγ̂i

p
→− 1

The proof is in the appendix.
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As shown in part b), the EG-DF t-statistic will diverge to minus
infinity, thus (correctly) rejecting the null hypothesis of no cointe-
gration. The same results as those of theorem 2 are obtained when
the break in xt is in level, instead of in slope (details available upon
request). When the break is in yt instead of in xt, however, results
become less clear cut. Consider the following DGP:

xt = x0 + µxt + Sxt (8)

yt = µy + βyxt + γyDTyt + uyt (9)

In this case, deviations of xt from a linear trend are nonstation-
ary, i.e. they follow a unit root, which is, again, also part of yt. Since
uyt is stationary, xt and yt are cointegrated, CI(1,1).6 As shown in
theorem 3, the EG test statistic will diverge.

THEOREM 3. Let xt and yt be generated according to DGP (8) and
(9), respectively with λy = (Tby

/T ) ∈ (0, 1)

1. If the estimated residuals from (5) are used in regression mo-
del (7), then, as T → ∞,

a) γ̂1 = Op(T
−1)

b) tγ̂1
= Op(T

1/2)

2. If the estimated residuals from (6) are used in regression mo-
del (7) then, as T → ∞,

a) γ̂2 = Op(T
−1)

b) tγ̂2
= Op(T

1/2)

The proof is in the appendix.

6 Note that, when xt and yt are generated by DGPs (8) and (9), respectively,
both are cointegrated since they share a common stochastic trend, (Sxt). Also
note that the difference yt−µy−βyxt=γyDTyt+uyt, although it does not contain
a unit root, is still non-stationary due to the presence of a broken trend (and thus

can be called broken-trend stationary).



STRUCTURAL BREAKS ON THE ENGLE-GRANGER TEST 109

Remarks:

1. Parts 1.a) and 2.a) show that the estimated coefficient con-
verges in probability to a (non-zero) constant as the sample grows
large (at rate T ).

2. Parts 1.b) and 2.b) show that the t-statistic will asymptotically

diverge (at rate
√

T ). Should the t-statistic diverge to minus infinity,
the null hypotheses H0 : γi = 0, i = 1, 2 in regression model (7) will
be correctly rejected in large samples (see below).

As a corollary of theorem 3, consider the classical formula of the

t-ratio, tγ̂1
= γ̂1/

√

σ2
γ1

, where σ2
γ1

is the estimated variance of the

parameter. Note that the sign of the t-statistic is the same as that
of the numerator (the estimated parameter), since the denominator
is always positive. As shown at the end of the proof of theorem 3 in
the appendix, the asymptotic value of the estimated parameter γ̂1 is:

Tγ̂1

p
→ 3

1
2 − λy

λy(λy − 1)

As can be seen, the denominator of this limit expression is always
negative, since 0 < λy < 1, if λy > 1/2(λy < 1/2), the numerator
and hence the t-ratio, are positive (negative). Hence, if we define taγ1

as the value of T−1/2 tγ̂1
when T → ∞, then taγ̂1

< 0 if λy < 1/2

and taγ̂1
> 0 if λy > 1/2. This implies that, asymptotically, the

test correctly identifies cointegration when the break is early in the
sample. A similar result is obtained in Montañes and Reyes (1998)
in the context of unit root testing under breaking trend functions. A
break in the second half of the sample, however, will induce the test
to (erroneously) indicate no cointegration asymptotically.

The expression for the asymptotic t-statistic tγ̂2 is much more
complicated and, in general, depends on other parameters in the DGP.
Thus, the sign of the limit cannot be established analytically. Simu-
lation evidence on the asymptotic and small sample behavior of this
t-statistic is presented below.

Finally, as one might expect, if in the cointegrating equations (5)
or (6) we include a trend break dummy variable (assuming of course
we know the timing of the break), then the Engle-Granger t-statistic
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for testing cointegration will diverge to minus infinity, thereby cor-
rectly rejecting the null of no cointegration.7

2.3. Numerical calculations

The above asymptotic results show that, in some cases, the test will
(1) fail to indicate cointegration, when in fact the variables are coin-
tegrated, and (2) indicate spuriously the presence of cointegration
for independent time series. Let us resort to numerical calculations,
based on the asymptotic results, to study first the possibility of the
test failing to indicate the presence of cointegration when in fact there
is cointegration among the variables. We consider the case of CI(1,1)
variables with a trend-break in yt, and concentrate on the (asymp-
totic) sign of the t-statistic tγ̂2

from theorem 3, when regression equa-
tion (6) is estimated.8 Assume, then, that the parameters in the DGP

(8) and (9) are as follows:

xt = 0.4t + Sxt

yt = 0.7 + 0.2 xt + 0.1 DTyt + uyt

with λy = 0.7. With these parameter values, and using the asymptotic
expression for the t-statistic (not shown), it is easy to calculate that,

as T → ∞, T−1/2 tγ̂2

a
= 0.0062. On the other hand, when λy = 0.3,

then T−1/2 tγ̂2

a
= −0.0141. Furthermore, letting λy = 0.3, with µx =

−1.1, βy = 0.8, and γy = 0.9, we obtain that T−1/2 tγ̂2

a
= 0.0835.

Therefore, the t-statistic can be asymptotically negative or positive,
depending on parameter values. In other words, the test will not be
pivotal, leading to potentially incorrect inference in the limit.

7 In this case, the practitioner would estimate yt=α3+β3xt+γ3DTyt+u3t. The

cointegration equation is correctly specified, which implies that α̂3

p

→µy, β̂3

p

→ βy

and γ̂3

p

→γy , in DGP (9). This in turn means that u3t is asymptotically equivalent
to uyt. The Mathematica code that proves this is available at: http://dl.dropbox.

com/u/1307356/EstEc SpCo/MathCodeEstEc.zip.
8 We do not study the behavior of tγ̂1

as it is shown following theorem 3 that

its asymptotic sign depends only on the location of the break.
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Next consider the asymptotic behavior of the test for the case
of independent (not cointegrated) time series. As argued above, the
limiting expression of the test statistic depends on a number of un-
known parameters in the DGP. In order to evaluate numerically the
direction of divergence, several exercises were carried out for a range
of parameter values and combinations of DGPs, using the asymptotic
expression of the t-statistic (normalized by T 1/2, and a sample of size
T = 400 000. The normalized t-statistic can assume both positive
and negative values, depending on parameter values and combina-
tions of DGPs. For example, assume that both variable have been
independently generated by DGP 4 using the following parameters:
σx = σy = 1.00, µx = 2.00, µy = −7.00, θx = 1.00, θy = −0.50,

λx = 0.30, and λy = 0.70. In this case, T−1/2tγ̂2

a
= − 0.0766.

When the parameter values are the same, except for λx = 0.70,

and λy = 0.30, then T−1/2tγ̂2

a
= 0.1667. But, if we also change to

µx = 4.00, µy = 3.00, θx = 0.75, θy = 1.50, λx = 0.70, and

λy = 0.30, then T−1/2tγ̂2

a
= 0.1440. This simple example shows that

the break locations are not the only parameter values that define the
sign of the t-statistic.

3. Small sample results

To learn about the behavior of the t-statistic in finite samples, we
present the results of a Monte Carlo experiment, whose design al-
lows a number of combinations of parameter values.9 Results show
that, depending on such combinations, divergence occurs in either
direction. We begin with the case of independent (not cointegrated)
variables. We simulate four combinations of the DGPs introduced
in table 1, and generate graphs of the EG test t-statistic, which re-
veal its behavior under different parameter values and sample sizes.
Table 2 presents the combinations used for the simulations. For in-
stance, combination 3-2 involves regressing a unit root process with
drift against a TS model with a break in level and slope of trend. The
values of the parameters were inspired by real data from Perron and
Zhu (2005), comprising historical real per capita GDP series for in-
dustrialized economies. Figure 1 shows the behavior of the t-statistic
for testing the null hypothesis of no cointegration for each of the four
combinations of DGP and a sample of size T = 100 (Figure 2 depicts

9 All calculations were carried out in Matlab R.12. Codes available from the
authors upon request.
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results for T = 500). Graphs a, b, c, and d correspond to combi-
nations 3-2 (an I(1) process against a TS with break process), 3-1
(an I(1) process against an MS with break process), 2-2 (a TS with
break process against a TS with break process), and 2-4 (a TS with
break process against an I(1) with break process), respectively. The
graphs show that the t-statistic takes only negative values.10 This im-
plies that the possibility of divergence towards minus infinity cannot
be ruled out. Accordingly, the possibility of spurious cointegration
among independent series with breaks is prevalent in finite samples,
and seems to grow with the sample size.

Table 2

Panel a Panel b Panel c Panel d

DGPs 3 y∼I(1) 3 y∼I(1) 2 y∼TS+break 2 y∼TS+break

2x∼TS+break 1 x∼MS+break 2 x∼TS+break 4 x∼I(1)+break

µy 0.7 0.7 0.7 0.7

µx 0.4 0.4 0.4 0.4

βy 0.04 0.04 0.04 0.04

βx [ -0.01,0.1] [ -0.01,0.1] 0.07

θy 0.04 0.04

θx 0.07 [ -0.1,0.1] 0.07 0.07

γy [ -0.05,0.05] 0.07

γx [ -0.05,0.05] 0.02 0.02

λy 0.3 0.3 [ 0,1]

λx 0.7 [ 0,1] 0.7 [ 0,1]

ρy 0 0.7 0 0

ρx 0.7 0.7 0 0

From graphs c and d in figure 1 it is interesting to note that
the value of the t-statistic is uniformly below the critical value at
the 1% level (-4) for any value of the location of breaks, contrary
to the findings of Leybourne and Newbold (2003), who report high
rejection rates for the EG test only when there is an early break in
the dependent variable (i.e. λy < 0.3). The source of the difference

10 Note, however, that the t-statistic is not always smaller than the critical

values at, say, the 1% level, that is, -4.008 (T=100) and -3.92 (T=500).
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is that the DGP they used is not exactly the same as the one used
here (but see below). Using parameter values from combination 2-4
in table 2 (with λx = 0.3 and λy = 0.7) we computed rejection rates
based on simulated data for various sample sizes and combination of
DGPs. Rejection rates of the t-statistic for testing γ = 0 in equation
(2) were computed using the critical values reported in Enders (2004)
at the 1% level. The number of replications is 10 000. Results are
presented in table 3.

Figure 1
Graphs of tγ̂. Parameter values from table 2: graph (a)-panel a;
graph (b)-panel b; graph (c)-panel c; graph (d)-panel d; T=100
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Figure 2
Graphs of tγ̂. Parameter values from table 2: graph (a)-panel a;
graph (b)-panel b; graph (c)-panel c; graph (d)-panel d; T=500

From table 3, it is clear that the test indicates spurious cointe-
gration in finite samples.

A second set of experiments was performed using larger values
for the various parameters, see table 4.

Results are shown in figures 3 and 4, corresponding to samples
of size 100 and 500. As can be seen, the t-statistic takes both positive
and negative values, but in this case graphs (a), (c) and (d) indicate
that as the sample size grows, the statistic tends to move towards
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positive values. For this second set of experiments, our results re-
semble those of Leybourne and Newbold (2003), in the sense that the
t-statistic tends to be more negative the closer are the breaks to the
beginning of the sample, according to graph (d) in figures 3 and 4.

Table 3
Rejection rates for t

γ̂

Combinations of DGPs in the assumption

T 1-1 1-2 1-3 1-4 2-2 2-3 2-4 4-2

50 .99 .99 .99 .99 .99 .99 .99 .55

100 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

200 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

500 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4

Panel a Panel b Panel c Panel d

DGPs 3 y∼I(1) 3 y∼I(1) 2 y∼TS+break 2 y∼TS+break

2x∼TS+break 1 x∼MS+break 2 x∼TS+break 4 x∼I(1)+break

µy 2.7 2.7 2.7 2.7

µx 0.5 0.5 0.5 0.5

βy 0.04 0.04 0.9 0.04

βx [ -5,5] [ -5,5] 0.9

θy -1.7 -1.7

θx 1.5 [ -1.8,1.8] 1.5

γy [ -1.5,2] 0.07

γx [ -1.5,2] 1.5 1.5

λy 0.3 0.3 [ 0,1]

λx 0.7 [ 0,1] 0.7 [ 0,1]

ρy 0 0.7 0 0

ρx 0.7 0.7 0 0
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Figure 3
Graphs of tγ̂. Parameter values from table 4: graph (a)-panel a;
graph (b)-panel b; graph (c)-panel c; graph (d)-panel d; T=100

Turning to the case of cointegrated variables, consider DGPs (3)
and (4) with µx = 0.4, µy = 0.7, βy = 0.09, θx ∈ [−0.1, 0.1], λx ∈
(0, 1), and uyt, uxt are iid random variables. Figure 5 shows graphs of
the EG test t-statistic, based on regression (5), for samples of size T =
100 (graph (a)), and T = 500 (graph (b)), using 1 000 replications.
Graph (c) shows the behavior of the normalized statistic. Note from
graphs (a) and (b) how the statistic becomes more negative as the
sample size grows. Furthermore, it does not depend on the size nor
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the location of the break. Graph (c) shows that convergence of the
simulated value to the asymptotic one is fast. These results allow us
to argue that the large sample results seem to hold in finite samples:
the test correctly rejects the unit root in the residuals of (5), thus
indicating cointegration.

Figure 4
Graphs of tγ̂. Parameter values from table 4: graph (a)-panel a;
graph (b)-panel b; graph (c)-panel c; graph (d)-panel d; T=500
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Figure 5
Graphs of tγ̂. DGPs (3) [I(1)] and (4) [I(1) + breaks]

Figure 6 shows similar graphs but uses DGP (8) and (9) with
γy ∈ [−0.05, 0.05], and γy ∈ (0, 1), i.e. two CI(1,1) variables with a
trend-break in y (the rest of the parameter values are those of the
previous experiment). Graph (a) shows that, with T = 100, the
statistic does not seem to be very sensitive to values of the break
fraction. Graph (b) shows, however, that as sample size increases,
the dependence of the statistic on the break fraction starts to show
up, as the asymptotic results of theorem 3 indicate. Graph (c) shows
the behavior of the t-statistic for different values of the break fraction
and different sample sizes, together with the critical value at the 10%
level, using T = 100.11

11 We report a single critical value (corresponding to T=100) for simplicity,
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Figure 6
Graphs of tγ̂. DGPs (8) [I(1)] and (9) [I(1) + breaks]

As can be seen, for samples of size T = 100, the test rejects the
null hypothesis, thus correctly indicating the presence of cointegra-
tion; the break fraction does not seem to be of any relevance. As
the sample size grows, however, the sign of the statistic becomes
a function of the break fraction. For the case T = 500, for in-
stance, the break fraction affects inference. For very large sample
sizes (T = 10 000), the behavior of the statistic approaches the one
predicted by the asymptotic theory presented in theorem 3. For sam-
ple sizes of practical relevance in macroeconomics (100 ≤ T ≤ 500),
inference based on the t-statistic could be influenced by the break
fraction, which would lead to incorrect inferences when the break is
around the middle of the sample. For larger samples, the null is not
rejected, incorrectly rejecting cointegration, for any value of the break
fraction. As expected from results in theorem 3, the statistic takes

without affecting our conclusions. We use γy=0.14. Increasing the value of the

size of the break makes the finite sample behavior closer to the asymptotic one.
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positive values when the break occurs in the second half of the sample,
and vice versa.

4. Empirical evidence

To illustrate the possibility of spurious cointegration using real data,
we present an empirical exercise using data on marriages (to be pre-
cise, the proportion of Church of England marriages to all marriages)
and mortality rates per 1 000 persons, studied by Yule (1926). The
data are annual and span the period 1886 to 1911. Note that this sec-
tion does not pretend to offer a complete time series analysis of these
data. Its purpose is simply to present an illustration on the possibil-
ity of finding a cointegration relationship using real data, comprising
variables which in principle have no relationship with each other.

We start by applying Augmented Dickey-Fuller tests under a va-
riety of lag length selection criteria. In particular, we use the general-
to-specific procedure advocated in Perron (1997), as well as several in-
formation criteria (AIC,BIC,HQ). We also apply Ng-Perron tests using
the improving power correction suggested by Perron and Qu (2007).
Individual results are available upon request.

Pretesting for unit roots (see table 5, column labeled O.I.) in-
dicate that each variable follows a unit root process.12 Since the
theoretical results presented above apply when at least one of the
variables has undergone a structural break, we followed Zivot and An-
drews (1992, ZA henceforth), Perron (1997), and Kapetanios (2005),
and test for a unit root allowing for breaks in the trend function. As
can be seen from table 5, when allowing for a broken trend in mor-
tality, methods in ZA, Perron (1997), and Kapetanios (2005), detect
a break in/or around 1889, while the unit root is rejected. On the
other hand, for marriages, the unit root cannot be rejected for either
test.

When structural breaks are not taken into account, both vari-
ables would appear to be I(1). The Engle-Granger test statistic is
-5.824 when we run marriages on mortality, and -6.263 when we run
mortality on marriages. As can be seen, this example, which has
been used to illustrate the spurious regression phenomenon, can also
be used to exemplify the presence of spurious cointegration, due to
the presence of a structural break in one of the variables.

12 We applied the procedures in Dickey and Pantula (1987) and Pantula (1989)

to determine the order of integration of a time series.
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Therefore, there appears to be a long-run equilibrium relation-
ship between marriages and mortality rates in England and Wales,
for the years 1866-1911, according to the Engle-Granger test. Of
course, this is a spurious finding, since one does not expect to find
cointegration between these two variables.

Figure 7
Mortality rate (thin line) and Anglican marriages

(thick line): (a) time series, (b) scatter plot
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Table 5
Unit root tests and unit root tests allowing for structural breaks

Variable T O.I.1,3 ZA2,3 Perron (1997)2,3 Kapetanios 3

Marriages 46 I(1)4 I(1) I(1) I(1)

Mortality 46 I(1) I(0) + break I(0) + break I(0) + break

1889 1888 1889

Notes: 1: O.I. stands for order of integration. The results of this column are

based on ADF and Ng and Perron tests, as discussed in the text. 2: The results

indicating a Broken TS model, hold for any of the three models considered in ZA and

Perron: with a changing mean, a changing trend, or a combination of them. For these

two tests we used a trimming of 5 observations. 3 : The maximum length of the AR

augmentation is set according to the formula. kmax=integer[12(T/100)1/4]. See for

instance Ng and Perron (2001)
4
: For this series, evidence based on the Ng and Perron

tests is mixed: while the MZα and the MSB indicate that the process is I(2), the

MZt and the MPT favour an I(1) model.

5. Conclusions

Results in this paper represent an extension of Gonzalo and Lee’s
(1998) results and provide a theoretical explanation of Leybourne
and Newbold’s (2003) simulated evidence. We find that the EG test
is sensitive to miss-specification of the trend behavior and can lead
to spurious rejection of the null hypothesis of no cointegration for
independent time series with breaks. It can also reject cointegration
when the variables are indeed cointegrated. In particular, it has been
shown that the Engle-Granger test for cointegration, based on the
DF t-statistic, does not posses a limiting distribution, but diverges at
rate root-T . Given the dependency of the asymptotic distribution on
the various parameters in the DGP, the paper analyzed the behav-
ior of the t-statistic through Monte Carlo simulations. Results show
that the divergence of the EG test statistic can occur in either direc-
tion. For a particular set of (empirically relevant) parameters, the
simulation experiments indicate that the statistic tends to minus in-
finity, and, therefore, can misleadingly indicate cointegration among
independent variables. However, we also find that a different set of
parameter values indicate divergence towards infinity, which would
lead to correct inference. We also showed that a trend-break in the
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dependent variable of two CI(1,1) variables affects the behavior of the
test statistic, and could lead to incorrect inference, depending on the
break fraction, the sample size, and the break size.

Through an empirical exercise, we showed that spurious cointe-
gration can arise when there are breaks in the data generating process.
We believe the results presented are relevant, given the difficulty in
distinguishing among I(1) variables from stationary variables around
broken trends, that is, given the low power of unit root tests against
broken trend stationary alternatives. All in all, the EG test should
be used with caution, since the presence of neglected breaks could
produce spurious rejections of the null hypothesis of no cointegration
among independent time series, or over-rejections of a genuine cointe-
gration relationship. Given the potential negative impact of neglected
breaks on inference using the EG test, we adhere to Gonzalo and Lee’s
(1998: 149) recommendation in the sense that “...pre-testing for indi-
vidual unit roots is not enough. We have to be sure that the variables
do not have any other trending or long-memory behavior different
from that of a unit root process”.
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Appendix

Proof of THEOREM 1

Here we present the proof on how to obtain the order in probability
of two combinations of DGPs, namely, the combinations 2-2 and 4-
4: zt = µz + θzDUzt + βzt + γzDTzt + uzt, and zt = µz + βzt +
γzDTzt + Szt, respectively, for z = y, x. The proof for both cases
can be presented jointly because the leading terms in the asymptotic
expressions for DGPs 2 and 4 (the deterministic linear trend and the
trend break dummies) are the same. We omit the proof for the rest
of the combinations since they follow the same steps. All sums run
from t = 1 to T . The OLS estimator of γ from (2) is:

γ̂ =
(

∑

∆ûtût−1

) (

∑

û2
t−1

)

−1

Where
∑

∆ûtût−1 =
∑

∆ytyt−1− α̂
∑

∆yt− δ̂
∑

∆ytxt−1− δ̂
∑

∆xt

yt−1 + α̂δ̂
∑

∆xt + δ̂2
∑

∆xtxt−1.

From direct calculation, and using the fact that, for (1), α̂ =

Op(T ), δ̂ = Op(1),
∑

û2
(t−1) = Op(T

3) (see Noriega and Ventosa-

Santaulària, 2006), it is simple to show that each element of
∑

ût

û(t−1) is Op(T
2).

Therefore,

γ̂ =
Op(T

2)

Op(T 3)

which implies that T γ̂ = Op(1).

Now define the residuals ε̂t from (2) as:

ε̂t = ût − γ̂û(t−1)

The estimated variance is:

σ̂2
ε = T−1

[

∑

(∆ût)
2

+ γ̂2
∑

û2
t−1 − 2γ̂

∑

∆ûtût−1

]
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where, again, direct calculations indicate that

∑

(∆ût)
2

=
∑

(

∆yt − δ̂∆xt

)2

= Op (T )

Hence

σ̂2
ε = T−1

[

Op (T ) + (T γ̂)
2
T−2Op

(

T 3
)

− 2 (T γ̂)T−1Op

(

T 2
)

]

= Op (1) .

Finally, the t-statistic tγ̂ can be written as:

T γ̂

[

σ̂2
εT

3
(

∑

û2
t−1

)

−1
]1/2

= T−1/2tγ̂ = Op(1)

which proves the theorem for DGPs 2-2 and 4-4.

Proof of THEOREM 2

We present the proof using residuals from equation (5). The steps
needed to prove the Theorem for the case of regression model (6)
are the same. In the first step we obtain the limiting distribution of

the OLS estimates α̂1 and β̂1 from (5). For this we need the sample
moments of y and x (All sums run from t = 1 to T ):

(

α̂1

β̂1

)

=

(

T
∑

xt
∑

xt

∑

x2
t

)

−1 (
∑

yt
∑

xt yt

)

where simple calculations give

∑

xt = x0T + µx

∑

t + θ
∑

DTxt +
(

T−3/2Sxt

)

T 3/2

=
1

2

[

µx + θ(1 − λ)
2
]

T 2 + Op

(

T 3/2
)
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∑

x2
t =

1

3

[

µ2
x + θ2(1 − λ)

3
+ µxθ(1 − λ)

2
(λ + 2)

]

T 3 + Op

(

T 5/2
)

∑

yt =
1

2
βy

[

µx + θ(1 − λ)
2
]

T 2 + Op

(

T 3/2
)

∑

xtyt = 1
3βy

[

µ2
x + θ2(1 − λ)

3
+ µxθ(1 − λ)

2
(λ + 2)

]

T 3+Op

(

T 5/2
)

Calculations are carried out using a Mathematica code, available

upon request, which produces expressions for α̂1 and β̂1, as functions
of (decreasing powers of) the sample size. This ordering in terms of
powers of the sample size allows us to identify the required normal-
ization, used to establish the following asymptotic results:

α̂1
p
→µy

β̂1
p
→ βy

The second step consists in obtaining the asymptotic behavior of

the elements of the t-statistic, tγ̂1
= γ̂1

[

σ̂2
ε1

(
∑

û2
1t−1

)

−1
]

−1/2

, where

γ̂1 is the OLS estimator of γ1 in (7), and σ̂2
ε1

= T−1
∑

ε2
1t. We

begin with γ̂1. Note that γ̂1 = (
∑

∆û1tû1t−1)
(
∑

û2
1t−1

)

−1
, where

û1t = yt−α̂1−β̂1xt. The numerator can be written as
∑

∆û1tû1t−1 =
∑

[(

βy − β̂1

)

∆xt + ∆uyt

] [(

βy − β̂1

)

xt−1 + (µy − α̂1) + uyt−1

]

=
∑

∆uytuyt−1 + Op (1), since (βy − β̂1) and (µy − α1) vanish asymp-
totically. Since

∑

∆uytuyt−1 =
∑

uytuyt−1−
∑

u2
yt−1 = op (T ), then:

T−1
∑

∆û1tû1t−1
p
→−σ2

y

The denominator can be written as

∑

û2
1t−1 =

∑

[(

βy − β̂1

)

xt−1 + (µy − α̂1) + uyt−1

]2

=
∑

u2
yt−1 + op (1)
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Hence

T−1
∑

û2
1t−1

p
→σ2

y

Therefore,

γ̂1
p
→−1

as shown in part a) of theorem 2.

Now define residuals ε̂1t = ∆û1t − γ̂1û1t−1. The error variance,
σ̂2

ε1
, is defined as

σ̂2
ε1

= T−1
[

∑

(∆û1t)
2

+ γ̂2
1

∑

û2
1t−1 − 2γ̂1

∑

∆û1tû1t−1

]

.

From results above, and the fact that T−1
∑

(∆û1t)
2 p
→σ2

y, it is easy
to show that

σ̂2
ε1

p
→σ2

y.

Therefore,

γ̂1

[

σ̂2
ε1

T
(

∑

û2
1t−1

)

−1
]

−1/2

= T−1/2tγ̂1

p
→−1

as shown in part b) of theorem 2.

Proof of THEOREM 3

The proof is very similar to that for theorem 2. As above, we first

obtain the limiting distribution of the OLS estimates α̂1 and β̂1 from

(5), and α̂2 and β̂2 from (6). Calculations are carried out using a

Mathematica code,13 which produces expressions for α̂1, β̂1, α̂2 and

β̂2. From the code, we get the following asymptotic results:

T−1α̂1
p
→−γy(λy − 1)

2
λy

13 http://dl.dropbox.com/u/1307356/EstEc SpCo/MathCodeEstEc.zip.
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β̂1
p
→ βy +

γy

µy
(λy − 1)

2
(1 + 2λy)

and

T−1α̂2
p
→

γy(λy−1)2λyµx(γyλ2

y
−γy−βyµx)

γ2
y
(λy−1)3(1+3λy)−2βyγy(λy−1)2(1+2λy)µx−β2

y
µ2

x

β̂2
p
→

µx

(

3γyλ2
y − γy − 2γyλ3

y − βyµx

)

γ2
y(λy − 1)3 (1 + 3λy) − 2βyγy(λy − 1)2 (1 + 2λy)µx − β2

yµ2
x

Note that, if there is no break in y(λy = 1), then α̂1
p
→ 0, α̂2

p
→ 0,

β̂1
p
→βy , and β̂2

p
→ 1

βy

.

As in the proof of theorem 2, the second step consists in ob-
taining the asymptotic behavior of the elements of the t-statistic,

tγ̂i
= γ̂i

[

σ̂2
εi

(
∑

û2
it−1

)

−1
]

−1/2

for i = 1, 2, where γ̂i is the OLS es-

timator of γi in (7), and σ̂2
εi

= T−1
∑

ε̂2
it. Note that, as before,

γ̂i = (
∑

∆ûitûit−1)
(
∑

û2
it−1

)

−1
, where û1t = yt − α̂1 − β̂1xt and

û2t = xt − α̂2 − β̂2yt. Direct calculations, similar as those performed
in the proof of theorem 2 show that

∑

∆ûitûit−1 = Op

(

T 2
)

, and
∑

û2
it−1 = Op

(

T 3
)

, wich imply that γ̂i = Op

(

T−1
)

, i = 1, 2. This
proves parts 1.a) and 2.a) of the theorem.

Residuals are defined as ε̂it = ∆ûit− γ̂iûit−1, and the error vari-
ance, σ̂2

εi
, is defined as

σ̂2
εi

= T−1
[

∑

(∆ûit)
2 + γ̂2

i

∑

û2
it−1 − 2γ̂i

∑

∆ûitûit−1

]

.

From direct calculations it follows that
∑

(∆ûit)
2

= Op (T ) There-
fore, combining this result with the orders in probability for

∑

∆ûit

ûit−1 and
∑

û2
it−1 we obtain σ̂2

εi
= O (1). Finally, since

∑

û2
it−1 =

Op

(

T 3
)

, then

T γ̂i

[

σ̂2
εi

T 3
(

∑

û2
it−1

)

−1
]

−1/2

= T−1/2tγ̂i
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converges, which implies that tγ̂i
= Op

(

T 1/2
)

thus proving parts 1.b)
and 2.b) of the theorem.

The asymptotic value of γ̂1

To obtain the asymptotic value of the parameter estimate, γ̂1, we

will need the asymptotic expressions for α̂1, β̂1, and σ̂2 from (5).
The first two have been presented in the proof of theorem 3, and are
reproduced here for convenience:

T−1α̂1
p
→−γy(λy − 1)

2
λy

def
= α,

β̂1
p
→ βy +

γy

µy
(λy − 1)

2
(1 + 2λy)

def
= β,

T−2σ̂2 p
→

1

3
γ2

y

(

λy − λ2
y

)3
,

where the limit expression for σ̂2 is obtained from the same Mathe-
matica code used in the proof of theorem 3. Now, the OLS formula of
γ̂1γ1 from (7) is:

γ̂1 =

∑

∆û1tû1t−1
∑

û2
1t−1

Note that the denominator is asymptotically identical to T σ̂2.
This implies that

∑

û2
1t−1 = Op

(

T 3
)

, since T−2σ̂2 = Op (1). Let
us now turn to the numerator. The sum can be decomposed in two
sums:

∑

∆û1tû1t−1 =
∑

∆ytût−1 − β̂1

∑

∆xtût−1.

Let us focus on the first element which, by simple substitution can
be expressed as:

∑

∆ytût−1 =
∑

(

βy∆xt + γyDUyt + ∆uyt

)(

yt−1 − α̂1 − β̂1xt−1

)

.
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Replacing ∆xt with µx +uxt, xt−1 with x−1 +µx (t − 1)+Sxt−1,

α̂1 with Tα, β̂1 with β, and yt−1 with µy + βyxt−1 + γyDTyt−1 +
uyt−1 we obtain (note that in order to save space, we only present
the leading terms of the relevant asymptotic expression, that is, the
asymptotically relevant terms):

∑

∆ytût−1 =
∑

(

βyµx +γyDUyt

)

·
(

µxβyt+γyDTyt−1 −α̂1−µxβ̂1t
)

.

Simple but tedious algebra shows that

T−2
∑

∆ytût−1
p
→ λ2

yγ2
y

(

λ3
y −

5

2
λ2

y + 2λy −
1

2

)

Note that we also replaced α̂1 and β̂1 by their asymptotic expressions.
Using exactly the same procedure as before, the second sum

∑

∆xtût−1 = Op

(

T k
)

where k < 2, so it can be ignored from the
asymptotic calculus. In sum, we have:

∑

∆ûtû1t−1
a
∼

∑

∆ytût−1,

where a
∼

denotes
∑

∆ûtû1t−1/
∑

∆ytût−1
p
→ 1. Remember now that

the denominator of γ̂1 is Op

(

T 3
)

. Since the numerator is Op

(

T 2
)

we

easily obtain that γ̂1 = Op

(

T−1
)

. As for the asymptotic expression,
the above results allow us to write:

T γ̂1
p
→

λ2
yγ2

y

(

λ3
y − 5

2
λ2

y + 2λy − 1
2

)

(1/3)γ2
y

(

λy − λ2
y

)3

Finally, using simple algebra this expression simplifies to:

T γ̂1
p
→ 3

1
2 − λy

λy (λy − 1)

which completes the proof.




