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TREATING EQUALS EQUALLY AND UNEQUALS

UNEQUALLY IN ONE-SIDED MATCHING MARKETS

TRATO DIFERENCIADO POR TIPO EN MERCADOS
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Resumen:

En el mercado de asignación unilateral de Shapley y Scarf (1974) introducimos
el axioma de “trato diferenciado por tipo” (TEEUU, por sus siglas en inglés).
Modelamos el mercado de asignación como una función medible que asigna a cada
tipo de agente un tipo de bien. Establecemos: 1) un método, fundamentado en la
literatura de transporte óptimo, que permite encontrar una asignación en el núcleo
que cumpla con el axioma TEEUU siempre que exista (el método consiste en
buscar una asignación Pareto óptima); 2) condiciones que garantizan la existencia
de una asignación en el núcleo que cumpla con TEEUU.

Abstract:

We introduce in the one-sided assignment game by Shapley and Scarf (1974) the
requirement called “Treating equals equally and unequal unequally” (TEEUU).
We model an assignment as a measurable function that assigns a type of good
to each type of agent. We establish: 1) a method, originated in optimal trans-
portation theory, to find a TEEUU assignment in the core whenever it exists- by
searching a Pareto optimal assignment- and 2) conditions under which a TEEUU
assignment in the core always exists.
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1. Introduction

We introduce a normative criterion, “Treating equals equally and
unequal unequally” (TEEUU), and study the existence of a TEEUU

assignment in a one-sided1 matching market that belongs to the core
of the economy.

An assignment is TEEUU if agents of the same type are assigned
to goods of the same type. Subsidized housing is a one-sided problem
where TEEUU might apply. There, a type for a family is the number
of children, and a type for a subsidized apartment is the number of
rooms; in this context, a TEEUU assignment is, for instance, one that
assigns apartments with a large number of bedrooms to large families.

The criteria also apply to two-sided matching markets; however,
we do not study such markets in this work. In the school choice
problem (Abdulkadiroglu and Sönmez, 2003), for instance, a match-
ing is fair if, whenever a student is rejected by a given school, all
students accepted at that school outperformed that student on the
priority order. In this approach, all students of the same type are
treated equally, and fair matchings belong to the core. Another ap-
proach to fairness considers that, moreover, less performing students
should have access to schools that provide further support and help
to improve their performance; thus, unequals should be treated un-
equally. We investigate in this paper the normative criteria “Treating
equals equally and unequals unequally” in a one-sided matching mar-
ket; we call such assignments TEEUU matchings. At these matchings,
students of the same type are assigned to school of the same type,
thus a matching is TEEUU if and only if it is in the core and stu-
dents of the same type are assigned to schools of the same type, i.e.,
type-exclusive.

Unsurprisingly, core TEEUU matchings do not always exist. The
paper deals with the following two questions: can one find a TEEUU

matching in the core whenever it exists? Are there conditions that
guarantee the existence of a TEEUU matching in the core?

We model the concept of assignment as a measurable function
that assigns a type of good to each type of agent. We use tools de-
veloped in the literature of transportation theory to carry out our
analysis. Our main result establishes that if an assignment is the
solution of a Pareto optimality problem, specified as a maximization

1 We follow the definition by Echenique et al. (2023: 37): “A one-sided match-

ing allocation problem consists of a set A of n agents, a set G of n indivisible

goods, and preferences of agents over goods”.
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problem -not necessarily linear- then it is in the core of the economy.
We establish specific continuity, differentiability, and topological con-
ditions for the non-emptiness of the core.

Garg et al. (2021) study a one-sided matching problem and de-
fine equal-type envy-free assignment, which requires eliminating envy-
freeness for agents of the same type. TEEUU differs from equal-type
envy-freeness for dealing with situations where one or many com-
ponent(s) of the good, interpreted as its type, reflects a need and,
thus, requires a level of care that differs from type to type. There-
fore, TEEUU covers equal-type envy-freeness and requires agents from
different types to get different types of objects.

Following Aumann (1964), our work belongs to the strand of the
literature that studies the existence of assignments in the core and
approximations of the core in variants of the Assignment game with
continuous types, or population of agents, like Kaneko and Wooders
(1985) and Kovalenkov and Wooders (2003). Our paper is closer to
Gretsky et al. (1992), who establish, in particular, the equivalence
of core solutions and Walrasian equilibrium. Our main result, Theo-
rem 4, demonstrates that a TEEUU solution to the Pareto optimality
problem- not necessarily linear- belongs to the core of the economy.
The result is key since it allows us to rest on Levin (2004) and Carlier
(2003) to establish our existence conditions. Since the TEEUU require-
ment is new, our results are independent of classical existence results
in the literature.

The remainder of the paper is organized as follows. Section 2
presents the type-exclusive assignment economy in which the assign-
ment concept is a measurable function. Theorem 4 establishes a re-
lation between the core of type-exclusive assignment economy and
an optimal transport problem. Finally, we propose a model where
there is a non-atomic measure on the set of types of goods and agents
and other conditions to ensure the non-emptiness of the core in the
type-exclusive assignment economy. We conclude with some general
comments on possible extensions. The Appendix presents an exten-
sion of Debreu’s preferences representation theorem.

2. Type-exclusive assignment model

We require assignments to be such that two or more agents of the
same type are assigned to goods of the same type, and vice versa, a
normative criterion potentially incompatible with the existence of a
core stable assignment.
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2.1 Type-exclusive assignment economy

Consider an economy that has a population of agents and a popu-
lation of indivisible goods. Each indivisible good is labeled with a
single type, g, which describes the different characteristics that fully
characterize a good. The set of types of goods is G. Each agent is
labeled with a type, a, where a particular type represents the pref-
erence relation ≺

∼a
over G. The set of types of agents is A. Assume

that A and G are compact Borel spaces; that is, they are separable
and compact metric spaces.

We assume that preference relations
{

≺
∼a

}

a∈A
are represented by

a continuous utility function u : A × G → [0, 1], that is:

g≺
∼a

g′ if and only if u (a, g) ≤ u (a, g′) . (1)

Two comments are in order about the utility function: 1) con-
tinuity is a requirement one cannot dispense of for our results to
hold (the definition of continuity should be understood in the con-
text of general topology), and 2) the utility function u (·, ·) represents
the preference relations of all types of agents, so when one considers
transformations f of u (·, ·) that also represent the preference rela-
tions of all types, they might treat arguments a and g differently.
Specifically, since no cardinality of utility is assumed for our purpose,
any transformation uf (·, ·) = f (u (·, ·)) that is strictly increasing also
represents the original preference relations, that is, if g≺

∼a
g′, then:

uf (a, g)) ≤ uf (a, g′)) if and only if u (a, g) ≤ u (a, g′) (2)

for all a ∈ A.

This is the only monotonicity restriction required on f .2

Let B(A) and B(G) be the Borel σ-algebras of A and G, respec-
tively. Probability measures η and ν assign a population distribution
over the sets A and G, respectively. Finally, we denote the population
of agents and the population of indivisible goods by the probability
measure spaces:

2 For conditions in {≺∼a}a∈A
that guarantee the existence of u (·, ·), see, for

example, Levin (1983); Rachev and Ruchendorf (1998, Theorem 5.5.18, p. 337);

or Bridges and Mehta (2013, Theorem 8.2.6, p. 146) (see Appendix).
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A := (A, B (A) , η) (3)

and

G := (G,B (G) , ν) , (4)

respectively. A type-exclusive assignment for the economy E is a
measurable function u : A → G. A type-exclusive assignment µ for
E is TEEUU if for each set of types of indivisible goods E in B(G),
the amount ν(E) of indivisible goods is proportional to the amount
η

(

µ−1 (E)
)

of agents. In other words, a type-exclusive assignment µ
for E is TEEUU if:

η
(

µ−1 (E)
)

= ν (E) for all E ∈ B (G) . (5)

A type-exclusive assignment economy is a quadruple E := (A, G,
u, µ0), where A is a population of agents as in (3), G is a population
of indivisible goods as in (4), u is a continuous function that satisfies
(1), and, finally, µ0 : A → G ∪ ∅ is a measurable function which
assigns for each type of agent a in A the agent’s initial endowment
µ0 (a) in G and satisfies (5), or all agents have the empty set ∅ as
initial endowment. The function µ0 is called the initial type-exclusive
endowment.

The following are two examples of type-exclusive economies and
assignments.

Example 1: Consider an economy E where A and G are finite sets
with the same cardinality n and the function u in (1) is represented
as a square matrix [u (a, g)]{a∈A, g∈G} of rank n. Let η and ν be

uniform probability distributions over the sets A and G, respectively;
that is, η (a) = ν (b) = 1

n
for all a ∈ A and g ∈ G. In this case, any

bijective function µ : A → G is a feasible type-exclusive assignment.
Remark: The economy in Example 1 is a particular case of Shap-

ley and Scarf (1974).
Example 2: Consider an economy E where A and G are both the

interval [0, 1] and the function u in (1) is u (a, g) = a2 + g2. Let η
and ν be uniform probability distributions over the sets A and G, re-
spectively; that is, η (da) = ν (dg) = 1 for all a ∈ A and g ∈ G, where
η (da) and ν (dg) are density functions. In this case, the functions
µ1 (a) = a and µ2 (a) = 1 − a are TEEUU type-exclusive assignments
for E .

We define now the core for this economy.
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Definition 3: The coreC (E) of an economy E is the set of all
TEEUU type-exclusive assignment µ such that there is no coalition
S ∈ B (A) with (ν (S) > 0) and type-exclusive assignment γ that
satisfies the following three conditions:

◦ E1. i) η(γ−1(E)) = ν(E) for all E ∈ B (G) ∩ γ (S) where γ (S) is
the topological closure of γ(S);

ii) µ(S) = γ(S), where µ(S) and γ(S) refer to the topological
closures of µ(S) and γ(S), respectively.

◦ E2. u(a, µ(a)) ≤ u(a, γ(a)) η-almost everywhere in S.
◦ E3. There exists D ∈ B (A) ∩ S with η(D) > 0, and u (a, µ (a)) <

u (a, γ (a)) η-almost everywhere in D.

Condition E1-i) refers to the feasibility of the assignment; a mass
of goods is assigned to a mass of agents in equivalent proportions.
Put differently, 30% of the agents cannot be assigned to 65% of goods.
Condition E1-ii) ensures that the blocking coalition S does not require
goods held by agents out of S. Conditions E2 and E3 refer to the
incentives that individuals in coalition S have to improve with respect
to their assignments. In conditions E2 and E3 the statement “η-
almost everywhere” means that these conditions can fail only in a
subset of η-measure zero.

2.2 Looking for a Pareto optimal assignment

In this section, we consider a social planner who searches for a type-
exclusive assignment that is Pareto optimal (when the initial match-
ing is the empty one, i.e., µ0 (a) = ∅ for all a in A). Let L be the set
of all feasible type-exclusive assignment, i.e.,

L :=
{

µ : A → G : η
(

µ−1 (E)
)

= ν (E) for all E ∈ B (G)
}

. (6)

Consider the social planner’s problem in an economy E :

max
µ∈L

∫
A

u (a, µ (a)) η (da) (7)

with L as in (6). We observe that L can be empty, as in Example
6.

If µ∗ is a solution to the planner’s problem, one cannot strictly
increase the utility of a given type without lowering the others; thus
µ∗ is Pareto optimal. Obviously, it is not the only one, and when u is
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transformed by a new utility function that satisfies (2), the new so-
lution might be another Pareto optimal assignment. The dependence
on the utility representation is not critical for our present purpose,
which is to establish the relation between the core of the economy
C (E) and the social planner’s problem (7).

Theorem 4: A type-exclusive assignment µ∗ is solution to the
social planner’s problem (7), then µ∗ is in C (E).

Proof. Suppose that µ∗ is solution to (7) and it is not in C (E).
Then there exists S ∈ B (A) (with η (s) > 0) and a feasible type-
exclusive assignment γ which satisfy E1-E2 in Definition 3.

Now, consider the exclusive assignment:

Note that γ (S) = µ (S) = µ∗ (S). Let E ∈ B (G). Then by
E1-ii), the properties of the inverse image, and (5), we have that:

η
(

µ−1 (E)
)

= η
(

µ−1
(

E ∩ γ (S)
))

+ η
(

µ−1
(

E ∩
(

G \ γ (S)
)))

= η
(

γ−1
(

E ∩ γ (S)
))

+ η
(

µ∗−1
(

E ∩
(

G \ γ (S)
)))

= η
(

γ−1
(

E ∩ γ (S)
))

+ η
(

µ∗−1
(

E\E ∩ γ (S)
))

= η
(

γ−1
(

E ∩ γ (S)
))

+η
(

µ∗−1 (E) \ µ∗−1
(

E ∩ γ (S)
))

= η
(

γ−1
(

E ∩ γ (S)
))

+η
(

µ∗−1 (E)
)

−η
(

µ∗−1
(

E ∩ γ (S)
))

= ν
(

E ∩ γ (S)
)

+ ν (E)− ν
(

E ∩ γ (S)
)

= ν (E) .

Thus, µ is a TEEUU exclusive assignment for E . Moreover, by E2
and E3, it satisfies that:
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∫
A

u(a, µ∗ (a))η (da) = ∫
A−S

u (a, µ∗ (a)) η (da) + ∫
S

u (a, µ∗ (a)) η (da)

< ∫
A−S

u (a, µ∗ (a)) η (da) + ∫
S

u (a, γ (a)) η (da)

= ∫
A−S

u (a, µ (a)) η (da) + ∫
S

u (a, µ (a)) η (da)

= ∫
A

u (a, µ (a)) η (da) .

Therefore, µ∗ is not optimal for (7), which is a contradiction. So,
we conclude that µ∗ is in the core.

Example 5: Consider an economy E as in Example 2. In this
case, L (as in (6)) is the set of all bijective functions µ : A → G. The
social planner’s problem is given by the optimization problem:

max
µ∈L

1

n

∑

a∈A

u (a, µ (a)) .

2.3 The core and TEEUU allocations

Consider an economy E . If µ∗ is a solution to the problem (7), then
by Theorem 4, µ∗ is in C (E) and therefore the core of E is not empty.
Nevertheless, the set of TEEUU allocation L in (6) is not necessarily
compact nor convex; in fact it may be empty (as in Example 6). In
any case, (7) may have no solution. The following example provides
a case where the set of TEEUU allocations L is empty.

Example 6: Consider a population of agents A := (A,B (A) , δa)
and a population of goods G := (G,B (G) , ν), where δa is Dirac
probability measure at a ∈ A and ν is defined by:

ν (E) :=
1

2
δg1

(E) +
1

2
δg2

(E) ∀E ∈ B (G) ,

where δg1
and δg2

are Dirac probability measures on G with g1 6=
g2. This example describes a situation in which we only have two
types of goods, and one type of agent. In this case L = ∅.

Remark 7: Consider an economy as in Example 1, where A and
G are finite sets with the same cardinality n, and η and ν are uni-
form probability distributions over the sets A and G, respectively. In
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this case, the social planner’s problem has a solution; see, for exam-
ple, Koopmans and Beckmann (1957) or Shapley and Scarf (1974).
Moreover, according to Theorem 4, the core of this economy is not
empty.

2.4 Non-atomic sets of types and the non-emptiness of C (E)

In this section, we establish particular conditions under which if we
have non-atomic sets of types, then the core of an economy E is
nonempty. We consider the following assumptions:

◦ A.1. Non-atomic sets of types. The set of types of agents A and
the set of types of indivisible goods G are compact subsets of
Rn, and η is a probability measure on B(A), which is absolutely
continuous with respect to n-dimensional Lebesgue measure.

◦ A.2. Heterogeneity on utility. Let U be a differentiable function
in A× G. If g′, g ∈ supp (ν) with g 6= g′, where supp (ν) denotes
the support of probability measure ν, then:

∂u

∂a
(a, g) 6=

∂u

∂a
(a, g′) .

◦ A.3.Convexity/concavity in types of agents. The set A is convex,
and for each g ∈ supp (ν), the function a → u (a, g) is strictly
concave or strictly convex.

◦ A.4. Boundedness on the heterogeneity of types of agents. The
set int(supp(η)) is not empty and its complement is Lebesgue
negligible;3 for every g ∈supp(v), a → (a, g) is differentiable and
for any a ∈ supp(η), there exists a neighborhood V of a and a
number ca > 0, such that:

||u (a1, g) − u (a2, g)| | ≤ caa1−a2 for all a1, a2 ∈ V, g ∈ supp (ν)

Proposition 8: Consider assumptions A1, A2, and A3. Then the
problem (7) admits at least one solution.

Proof. See Levin (2004), Theorems 1.2 and 1.3.
A few comments on the conditions are in order. A1 Non-atomic

set of types: previous results do not require the assumption; how-
ever, it might be imposed from the outset of our model since most

3 Where int(supp(η)) denotates the interior set of supp(η).
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economic models deal with continuous- and even differentiable- distri-
bution functions of types. Without A1, building a function that copes
with TEEUU is technically difficult. A2/A3 Heterogeneity on utilities
and heterogeneity in the types of agents; in both cases, a lack of het-
erogeneity leads to the same evaluation of two types of agents/goods
by the objective function in the Pareto optimality problem (7), thus
leading to the assignment of the same types in the solution, violating
TEEUU. A3 can indeed be relaxed. Nevertheless, the changes in het-
erogeneity in types of agents should not be too steep, as imposed in
A4.

Proposition 9: Consider assumptions A1, A2, and A4. Then the
problem (7) admits at least one solution.

Proof. See Levin (2004), Theorem 1.4. Carlier (2003) proposes
similar conditions of Proposition 9 for metric spaces.

The next example satisfies the assumptions A1, A2, and A4. The
reader can find other interesting examples in Levin (2004).

Example 10: Let E := (A, G, u, µ0) be a type-exclusive as-
signment economy, where A and G are convex and compact sub-
sets of <n; η is absolutely continuous with respect to the Lebesgue

measure on A; u (a, g) = −
∑

(ai − gi)
2

for a := (a1, . . . , a2) and
g := (g1, . . . , gn), and µ0 is any agent’s initial endowment. Let
µ∗ (a) = Ha + b, where H is symmetric and positive semi-definite
matrix, and b ∈ <n. If ν (E) = η

(

µ∗−1 (E)
)

for all E ∈ B (G), then
µ∗ is the unique optimal solution of (7), and it is in the core of E .

3. Concluding remarks

We introduce the normative requirement that we call TEEUU and de-
velop an approach based on optimal transport theory to find a TEEUU

assignment whenever it exists. While TEEUU proves to be a strong
requirement, the approach we develop, in contrast, is fruitful in type-
exclusive economies. We believe it is indeed a versatile and powerful
tool that can be used in general assignment problems, a task that we
hope to carry out in future research.
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Appendix: An extension of the Debreu’s preferences repre-
sentation theorem

Consider an economy assuming that A and G are compact Borel
spaces; that is, they are complete, separable, and compact metric
spaces. For the preference relations

{

≺
∼a

}

a∈A
, we assume that:

◦ H.1. rationality: for each a in A, ≺
∼a

is a is a complete and transitive
order relation;

◦ H.2. continuity in the goods: for each a in A and g′ in G, the sets
{

g ∈ G : g′≺
∼a

g
}

and
{

g ∈ G : g≺
∼a

g
}

are closed;

◦ H.3. continuity in the agents: for any g′,g ∈ G the set
{

a ∈ A : g′≺
∼a

g
}

is closed.
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The following theorem constitutes an extension of Debreu’s pref-
erence representation theorem (Debreu, 1954). The proof is provided
in Levin (1983); in Rachev and Rüschendorf (1998, Theorem 5.5.18,
p. 337); and in Bridges and Mehta (2013, Theorem 8.3.6, p. 146).

Theorem 11: Let A be the set of type of agents, and G be the
set of type of indivisible goods. Assume as in (1) and (3) that A and
G are compact metric spaces, and let G, in addition, be separable.
Suppose that the preference relations

{

≺
∼a

}

a∈A
satisfy H1, H2 and

H3. Then, there exists a continuous function u : A×G → [0, 1], such
that:

∀a ∈ A, g≺
∼a

g′if and only if u (a, g) ≤ u (a, g′) .




