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William José Olvera López
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1. Introduction

John von Neumann and Oskar Morgenstern developed the Expected
Utility Theory (EUT) in 1944. This theory has been extensively used
in game theory, industrial organization, financial theory, and other
important areas in economic theory. Graduate courses use texts like
Mas-Colell et al. (1995), Jehle and Reny (2011), Maschler et al.
(2013), Rubinstein (2012), among others, to explain it. The axiomatic
approach on each text apparently uses different languages and axioms.
In this paper, we prove the equivalence among those axiomatic sys-
tems, and build the lottery space in a recursive way. The importance
of doing this homologation consists on the unification in a common
language of properties and systems that look different from a first
sight.

Although the equivalence between axiomatizations is almost ob-
vious for specialists, it is not so for most students. That is why we
believe in the need to unify seemingly different languages and to offer
a formal proof of the equivalence between several axiomatizations.
In general, even slight modifications of axioms can generate different
theories. A classic example is non-Euclidean geometries.

The expected utility theory has been heavily revised. The well-
known Allais paradox showed the inconsistency of the theory with
some cases of agents’ choices faced with specific lotteries. This has
made it possible to analyse the consequences of weaknesses and vari-
ants of the independence axiom. Several authors have proposed al-
ternative schemes to model decisions under risk and uncertainty. Its
study is beyond the scope of this note. We recommend consulting Bar-
bera et al. (2004), and specially Sudgen (2004) and Schmidt (2004).

The standard proof of the expected utility theorem relies heavily
on the axiom of continuity to construct the utility of a lottery. Given
an arbitrary initial lottery, we construct its utility considering a spe-
cial lottery that is indifferent to the initial one. The special lottery
is a simple lottery that combines the most preferred with the least
preferred result. The utility of the initial lottery is the weight that
has the most desired result. The axiom of independence is the key to
obtain that the numerical representation is a linear mapping on the
probabilities; that is, it has the fundamental property of the expected
utility.

Cantala (2007) describes an interesting characterization of Ex-
pected Utility. The author translates preferences over lotteries into
preferences over “shifts in probabilities”. Changes in probabilities are
relatively straightforward. The probability of one outcome is reduced
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by a fixed feasible amount and the same amount increases the prob-
ability of another outcome. The author constructs an independence
axiom suitable to represent these types of “jumps” in lotteries. He
obtains a new characterization of the expected utility: continuous
preferences over lotteries are represented by an expected utility func-
tion if and only if the induced preferences satisfy his version of the
independence axiom for preferences over shifts in probabilities. The
axiom means that the ordering of shifts in probability is independent
of the weight and the original lottery. Cantala’s treatment (2007) can
be repeated in any of the axiomatic versions. It is possible to use his
proof technique to generate new versions of the expected utility theo-
rem by adapting the new version of the independence axiom on each
axiomatic system. In this paper, we are interested in the equivalences
among the different axiomatic systems rather than in the construc-
tive proof of the expected utility theorem. The approach of Cantala
(2007) is relevant because “it makes it clear that the cardinal nature
of expect utility is only a behavioural characteristic rooted in the
independence axiom and has no normative appeal” (Cantala, 2007:
101).

We show a proof based strongly on the construction of a common
language for rewriting the different systems of axioms. This means
the specification of a common lottery space where the preferences are
defined. The recursive construction of the lottery space is necessary:
it is not an exaggeration. It is introduced for technical reasons of
consistency, it makes sense, and it is suggested in Jehle and Reny
(2011).

Compound lotteries can be classified by their level of complexity.
Every compound lottery of any level has an expected utility level to
compare with any other lottery. However, this comparison requires
introducing an axiom that makes it possible to relate a compound
lottery with a simple one of the first level. This is done in the Jehle
and Reny (2011) axiomatization and Maschler et al. (2013). These
two axiomatizations are the better ones for explaining the economic
content of the axioms, in addition to the axioms of rationality of pref-
erences. The axiomatic presentations of Mas-Colell et al. (1995) and
Rubinstein (2012) focus on the two essential axioms in the proof of
the expected utility theorem: independence and continuity. In their
works, they consider compound lotteries, but they are artificially re-
duced to those of the first level. They avoid an axiom of simplification
by introducing the convexity of the lottery space.

The simplification axiom from compound to simple lotteries is an
empirically unsustainable assumption. It is not obvious that an agent
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recognizes a fairly complex compound lottery as indifferent to its
simplified form. In Mas-Colell et al. (1995), a simplex is introduced
as the lottery space. The convexity of this space makes it closed
under convex combinations. But this is a mathematical reason that
artificially simplifies and reduces (by convexity) the meaning of a
compound lottery of a second or more level. The simplification axiom
is strong but important because it considers the levels of complexity
in the construction of lotteries.

In summary, the presentation by Mas-Colell et al. (1995) is more
classical, but its continuity axiom is apparently more complex. We
could say that it abuses mathematics somewhat and sacrifices part of
the economic meaning. On the other hand, the presentations by Jehle
and Reny (1911) and Maschler et al. (2013) are more careful. Their
economic content has greater detail. The formulation of the continu-
ity axiom is clearer. The first one even breaks down independence
into two apparently less strong axioms: substitution and reduction to
simple games.

The order of the paper is as follows: in section 2, we analyze the
similarities in notation and concepts of the four axiomatic systems,
establishing a common language regarding the concept of compound
lotteries and the simplification action. Then, we compare two pairs
of axiomatic systems due to the similarities between them: Maschler
et al. (2013) and Jehle and Reny (2011) with four axioms each, and
Mas-Colell et al. (1995) and Rubinstein (2012), each one with a
system of two axioms. Finally, we show the equivalence of the four
systems by means of a theorem in section 3 of this article.

2. Model

An agent must take a decision before a random event occurs. The
final consequences of his decision are represented as possible outcomes
in the set X = {x1, . . . , xK}. The objects that each agent values are
called lotteries and are listed such that L = [p1 (x1) , . . . , pK (xK)] is a

simple lottery with pk ≥ 0 and
K
∑

k=1

pk = 1. L denotes the lottery that

assigns probability pk to each consequence xk ∈ X . For simplicity,
we will denote the lottery [α (x1) , 0 (x2) , . . . , 0 (xK−1) , (1 − α) (xK)]
just by [α (x1) , (1 − α) (xK)] for α ∈ (0, 1).

Let L1 = [p1 (x1) , . . . , pK (xK)] |x1, . . . , xK ∈ X ; pk ≥ 0 and
K
∑

k=1

pk = 1  be the set of simple lotteries, and Ln+1 = LnU

{

}
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[q1 (L1) , q2 (L2) , . . . , qH (LH)] | Lh ∈ Ln; qh ≥ 0 and
H
∑

h=1

qh =

1, ∀h = 1, 2, . . . , H . Then, the space of lotteries is given by

L =
∞

U
n=1

Ln. The lotteries that have the particularity of granting a

consequence xk ∈ X with probability equal to one will be called de-
generated lotteries and we denote them by Lxk

= [1 (xk)]. Lotteries
that have the characteristic of having other lotteries as consequences
will be called compound lotteries, that is, elements in Ln with n ≥ 2.

Example: In order to illustrate the previous ideas, let us consider the
next lotteries:

LA = [(1/2)(15), (1/2)(25)]

LB = [(1/3)(10), (1/3)(20),(1/3)(30)]

LC = [(3/4)(LA), (1/4)(LB)]

LD = [(2/3)(10), (1/3)(30)]

LE = [(1/2)(LC), (1/2)(LD)]

L = [(6/16)(10), (3/16)(15), (1/24)(20), (3/16)(25), (5/24)(30)]

Notice that L, LA, LB, LD ∈ L1, LC ∈ L2, LE ∈ L3. We can
represent the process of composing the lotteries with the tree scheme
given in figure 1.

Figure 1
Scheme of the composing of lotteries over

a set of outcomes (the terminal nodes)

Source: Authors’ elaboration.

{
}
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A classical axiom about the simplification of lotteries says that
each compound lottery must be indifferent to a simple lottery. In this
case, lottery L is indifferent to lottery LE , because the probability
of each outcome is the same in both lotteries. A strong axiom about
individual preferences is avoided if we assume convexity of the lottery
space. However, its economic meaning is important.

For comparing the four axiomatic systems, we define a general
binary relation �

∼ on L, which allows us to compare lotteries. Such
relation is called a preference relation.

A preference relation �
∼ is rational if:

1. For every L, L′ ∈ L ×L, we have L �
∼ L′ or L′ �

∼ L.
2. For any L, L′, L′′ ∈ L, if L �

∼ L′ and L′ �
∼ L′′, then L �

∼ L′′, where
L �

∼ L′ means that L is at least as good as L′.1

According to the definition of compound lottery, it is possible
to have uncertain decision problems where the consequences of the
alternatives are uncertain objects. For example, we have a raffle such
that one of the possible prizes is a chance to participate in another
raffle. So, this idea motivates the concept of simplification of com-
pound lotteries into an equivalent simple lottery, in the sense of the
preference relation. As the notion of simplification belongs to the
four axiomatic systems under our study, it is convenient to have a
common notation for it.

We define the lottery simplification, Simp : L → L1, for n ≥ 2,
as follows:

Simp (L) = L if L ∈ L1

[r1 (x1) , . . . , rK (xK)] if L ∈ Ln

(1)

where L = [q1 (L1) , . . . , qM (LM )] with L1, . . . , LM ∈
n−1

U
i=1

Li;

we assume that Simp (L1) =
[

p1
1 (x1) , . . . , p1

K (xK)
]

, Simp (L2) =
[

p2
1 (x1) , . . . , p2

K (xK)
]

, Simp (LM ) =
[

pM
1 (x1) , . . . , pM

K (xK)
]

and

we have, for every k ∈ {1, . . . , K}, rk = q1p
1
k + q2p

2
k + . . . + qMpM

k .

1 The strong preference and indifference are defined in the usual way, as fol-

lows: L � L′ ⇔ L �
∼ L′ but not L′ �

∼ L; L ≈ L′ ⇔ L �
∼ L′ and

L′ �
∼ L.
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As we said before, each axiomatic system under our study as-
sumes that a compound lottery can be simplified. In Jehle and Reny
(2011) and Maschler et al. (2013), this fact is assured by axioms
G6 and S, respectively. In Mas-Colell et al. (1995) and Rubinstein
(2012), the definition of compound lottery allows to make this kind
of simplification.

2.1 Axiomatic systems

Now, we introduce the four axiomatic systems of our study using the
notation of the previous section. We are going to refer to each one of
them by its author.

Mas-Colell et al. (1995):

• Independence (IMC): For every L, L′, L′′ ∈ L and α ∈ (0, 1), L�
∼L′

if and only if [α (L) , (1 − α) (L′′)] �∼ [α (L′) , (1− α) (L′′)].
• Continuity (CMC): For every L, L′, L′′ ∈ L, the following sets are

closed.
{α ∈ [0, 1] | [α (L) , (1 − α) (L′′)] �∼ L′}
{α ∈ [0, 1] |L′ �

∼ [α (L) , (1 − α) (L′′)]}

Maschler et al. (2013):

• Simplification (S): For every L ∈ L, L ≈ Simp (L).
• Independence (I): If L = [q1 (L1) , . . . , qm (Lm) , . . . , qM (LM )] ∈

L and L∗ ≈ Lm, then L ≈ [q1 (L1) , . . . , qm (L∗) , . . . , qM (LM )].
• Continuity (C): For every L, L′, L′′ ∈ L such that L�

∼ L′ �
∼ L′′,

there exists α ∈ [0, 1], where L′ ≈ [α (L) , (1 − α) (L′′)].
• Monotonicity (M): Assuming α, β ∈ [0, 1] and L � L′, then,

[α (L) , (1− α) (L′)] �∼ [β (L) , (1 − β) (L′)] if and only if α ≥ β.

Jehle and Reny (2011):

• Continuity (G3): For every L ∈ L, there exists a real number
α ∈ [0, 1], such that L ≈ [α (LxK

) , (1 − α) (Lx1
)].

• Monotonicity (G4): For every α, β ∈ [0, 1], [α (LxK
) , (1 − α) (Lx1

)]�∼
[β (LxK

) , (1 − β) (Lx1
)] if and only if α ≥ β.

• Substitution (G5): If L = [p1 (L1) , . . . , pM (LM )] and L′ = p1

(L′
1), . . . , pM(L′

M ) with Lm ≈L′
M for every m, then L ≈ L′.

• Reduction to simple gambles (G6): For every L ∈ L, if Simp (L) =
[r1 (x1) , . . . , rK (xK)] , then L ≈ Simp (L), where x1 denotes the
worst possible consequence and xk denotes the best one.

[ 
]
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Rubinstein (2012):

• Independency (IR): For any L, L′, L′′ ∈ L and α ∈ (0, 1), L �
∼ L′

if and only if [α (L) , (1 − α) (L′′)] �∼ [α (L′) , (1− α) (L′′)].
• Continuity (CR): If L � L′ � L′′, there exists a real number

α ∈ (0, 1) such that L′ ≈ [α (L) , (1 − α) (L′′)].

Independence axiom by Maschler et al. (2013), and Jehle and
Reny’s (2011) Substitution one imply that two lotteries are equiva-
lent if they assign the same probability distribution to different con-
sequences but indifferent between them. That is, if you create a new
lottery taking an existing one but substituting a consequence with an
indifferent one, both lotteries are indifferent, too.

In all axiomatic systems, the Continuity axiom allows the repre-
sentation of any lottery using a better and a worse lottery.

The Monotonicity axiom, in Jehle and Reny (2011) and Maschler
et al. (2013) axiomatic systems, implies to prefer lotteries that assign
a high probability to more preferred consequences.

3. Axiomatic equivalencies

First, we analyze the Simplification axiom; notice that this prop-
erty is part of the Maschler et al. (2013), and Jehle and Reny
(2011) axiomatic systems (S and G6, respectively), and the equiv-
alence between them is straightforward. In the Mas-Colell et al.
(1995) and Rubinstein (2012) axiomatic systems, this property is im-
plicit in the definition of a compound lottery. In Mas-Colell et al.
(1995), a compound lottery is denoted by (L1, . . . , LM ; α1, . . . , αM )
and its simplification is given by (q1, . . . , qK) where, for every k =
1, . . . , K, qk = α1p

1
k + α2p

2
k + . . . + αMpM

k denotes the probability
under (L1, . . . , LM ; α1, . . . , αM ) of the consequence xk. That con-
struction implies the generalization for any level of composition as
long as the probability distribution of the compound lottery is well
defined. The construction of compound lotteries in Rubinstein (2011)
is given in a similar way.

On the other hand, the axiomatic system of Jehle and Reny
(2011) has six axioms. Two of them are included in our definition
of preference relation: the completeness axiom G1 and the transi-
tivity axiom G2. Also, the simplification axiom G6 was rewritten
according to our notation and the function Simp. The equivalence
between S and G6 is straightforward. Henceforth, we conclude that
the simplification axiom is present in the four axiomatic systems.
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Now, we show the main result of our work.

Theorem: The following statements are equivalent.

1. The preference relation �
∼ on L satisfies the IMC and CMC axioms.

2. The preference relation �
∼ on L satisfies the I , C and M axioms.

3. The preference relation �
∼ on L satisfies the G3, G4, and G5

axioms.
4. The preference relation �

∼ on L satisfies the IR and CR axioms.

We use the following lemma.2

Lemma:
If �

∼ on L satisfies the IMC axiom, then for every
α ∈ (0, 1) and L, L′, L′′ ∈ L, L � L′ if and only if
[α (L) , (1 − α) (L′′) ]�[α (L′) , (1 − α) (L′′)], and

L ≈ L′ if and only if [α (L) , (1 − α) (L′′) ]≈[α (L′) , (1 − α) (L′′)].

Proof of the theorem:

First, we are going to show that Statement 1 implies Statement 2;
that is, if �

∼ satisfies IMC and CMC , then satisfies I , C and M .
For proving that �

∼ satisfies I , we must show that:

ifL = [q1 (L1) , . . . , qm (Lm) , . . . , qM (LM )] ∈ L

and Lm ≈ L∗, then L ≈ [q1 (L1) , . . . , qm (L∗) , . . . , qM (LM )].

We define:

LI = q1
∑

i6=m
qi

(L1), . . . ,
qm−1

∑

i6=m
qi

(Lm−1) ,
qm+1

∑

i6=m
qi

(Lm+1) ,

. . . , qM
∑

i6=m
qi

(LM ).

(2)

Because of the Lemma, we have
[

qm (Lm) , (1 − qm)
(

LI
)]

≈
[

qm (L∗) , (1 − qm)
(

LI
)]

.

2 Hara et al. (1997). Solution manual of Mas-Colell et al. (1995).

[ 

]
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Notice that the lottery at the left of the previous relation is equal
to L, and the simplification of the lottery at the right is:

[q1 (L1) , . . . , qm (L∗) , . . . , qM (LM )]

Then, because of S and the transitivity of ≈ we have:

L ≈ [q1 (L1) , . . . , qm (L∗) , . . . , qM (LM )]

For proving that �
∼ satisfies C, we must show that for any three

lotteries L, L′, L′′ ∈ L such that L �
∼ L′ �

∼ L′′, there exists a number
α ∈ [0, 1], where L′ ≈ [α (L) , (1 − α) (L′′)].

Let L, L′, L′′ ∈ L be lotteries such that L �
∼ L′ �

∼ L′′. We define:

A+ = {α ∈ [0, 1] | [α (L) , (1 − α) (L′′)] �∼ L′} and

A− = {α ∈ [0, 1] |L′ �
∼ [α (L) , (1 − α) (L′′)]}.

Because of CMC , A+ and A− are closed sets on [0, 1], and then
A+, A− ⊂ [0, 1]. Due to the completeness of �

∼, [0, 1] ⊂ A+ ∪ A−

and then, [0, 1] = A+ ∪ A−. If A+ ∩ A− = ∅, there is a contradiction
about the connection of [0, 1]. So A+ ∩ A− 6= ∅, which means that
there exists α such that L′ ≈ [α (L) , (1 − α) (L′′)].

To show that if �
∼ satisfies CMC and IMC , then �

∼ satisfies M , we
must prove that for any α, β ∈ [0, 1] and L, L′ ∈ L such that L � L′

we must have [α (L) , (1 − α) (L′)] �∼ [β (L) , (1 − β) (L′)] if and only if
α ≥ β, but this result is already done.3

�

Now, we will show that Statement 2 implies Statement 3; that is,
if �

∼ on L satisfies I , C and M , then it satisfies G3, G4, and G5.
Notice that G3 is implied directly from C, and G4 is implied by
M . Moreover, G5 is implied by repeated applications of I plus
the transitivity of �

∼; to see this fact, consider L, L′ ∈ L such that
L = [p1 (L1) , . . . , pM (LM )], L′ = [p1 (L′

1) , . . . , pM (L′
M )], and Lm ≈

L′
M for every m = 1, . . . , M . Applying I M times, we have:

[p1 (L1) , . . . , pM (LM )] ≈ [p1 (L′
1) , . . . , pM (LM )] ≈

[p1 (L′
1) , p2 (L′

2) , . . . , pM (LM )] ≈ . . . ≈ [p1 (L′
1) , . . . , pM (L′

M )],

3 This result is proven in Mas-Colell et al. (1995: 176).
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and, because of the transitivity of the relation:

[p1 (L1) , . . . , pM (LM )] ≈ [p1 (L′
1) , . . . , pM (L′

M )] .

�

Now, we are going to show that Statement 3 implies Statement 4.
That is, if �

∼ on L satisfies G3, G4, and G5, then it satisfies CRyIR.
For showing that �

∼ on L satisfies CR (that is, for every L, L′, L′′

∈ L such that L � L′ � L′′, there exists α ∈ (0, 1), such that L′ ≈
[α (L) , (1 − α) (L′′)]), let L, L′, L′′ ∈ L be three lotteries such that

L � L
′

� L′′. Because of G3, there exist β, γ, δ ∈ (0, 1), such that
L ≈ [β (LxK

) , (1 − β) (Lx1
)], L′ ≈ [γ (LxK

) , (1 − γ) (Lx1
)], and L′′ ≈

[δ (LxK
) , (1 − δ) (Lx1

)]. Notice that, because of G4 and L � L′ � L′′,
we have β > γ > δ; so, we can construct a lottery L∗ ∈ L such that
L∗ = [α [β (LxK

) , (1 − β) (Lx1
)]), (1 − α) ([δ (LxK

) , (1 − δ) (Lx1
)])],

with α = γ−δ
β−δ

, and then, Simp (L∗) = [γ (LxK
) , (1 − γ) (Lx1

)]. Thus,

because of G5, we have L∗ ≈ [α (L) , (1 − α) (L′′)], and by transitivity
and Simp (L∗) ≈ L′, it is implied that L′ ≈ [α (L), (1 − α) (L′′)], and
this is the fact we want to prove.

For showing that �
∼ on L satisfies IR, we must prove that for

every L, L′, L′′ ∈ L and α ∈ (0, 1) we have L �
∼ L′ if and only if

[α (L) , (1 − α) (L′′) ]�∼[α (L′) , (1 − α) (L′′)]. First, let us assume L�
∼

L′, and we must prove that α (L) , (1 − α) (L′′) ]�∼[α (L′) , (1 − α) (L′′)].
If L′′ is an arbitrary lottery, there are three cases to study: a)

L �
∼ L′′ �

∼ L′, b) L′′ �
∼ L �

∼ L′, and c) L �
∼ L′ �

∼ L′′.

Case a): We assume L �
∼ L′′ �

∼ L′

If L ≈ L′, then L ≈ L′ ≈ L′′. Because of G5, we have:

[α (L) , (1 − α) (L′′)] ≈ [α (L′) , (1− α) (L′′)] .

By definition of ≈ we have:

[α (L) , (1 − α) (L′′) ]�∼[α (L′) , (1 − α) (L′′)] .

Now, if L ≈ L′ is not true, then L � L′. Because of G3, there ex-
ist real numbers β, γ, δ ∈ [0, 1] such that L ≈ [β (LxK

) , (1 − β) (Lx1
)],

L′′ ≈ [γ (LxK
) , (1 − γ) (Lx1

)], and L′ ≈ [δ (LxK
) , (1 − δ) (Lx1

)]. Be-

cause of G4 and L �
∼ L

′′
�
∼ L′, we have β ≥ γ ≥ δ.
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We need to compare [α (L) , (1 − α)L′′] with [α (L′) , (1− α)L′′],
where α ∈ [0, 1]. Applying G5 and G6 to these expressions, we have:

[α (L) , (1 − α) L′′]

≈ [α ([β (LxK
) , (1 − β) (Lx1

)]) , (1 − α) [γ (LxK
) , (1 − γ) (Lx1

)]]

≈ [(αβ + (1 − α) γ) (LxK
) , α (1 − β) + (1 − α) (1 − γ) (Lx1

)]

(3)

[α (L′) , (1 − α)L′′]

≈ [α ([δ (LxK
) , (1 − δ) (Lx1

)]) , (1 − α) [γ (LxK
) , (1 − γ) (Lx1

)]]

≈ [(αδ + (1 − α) γ) (LxK
) , α (1 − δ) + (1 − α) (1− γ) (Lx1

)]

(4)

Because of G4 and the transitivity of �∼, we have [α (L) , (1 − α)L′′]
�
∼ [α (L′) , (1 − α)L′′], so the proof is done.

The proofs for b) and c) are analogous to a).

Now, we have to prove that:

[α (L) , (1 − α) (L′′) ]�∼[α (L′) , (1 − α) (L′′)]

implies L �
∼ L′. By contradiction L �

∼ L′, we have L′ � L. Thus,
we have to check three cases: a) L′′ �

∼ L′ � L, b) L′ � L �
∼L′′, and c)

L′ �
∼ L′′ � L.

Case a) L′′ �
∼ L′ � L

By hypothesis of case a) and the transitivity of �, we have L′′ � L.
Because of G3, there exist real numbers β, γ, δ ∈ [0, 1] such that
L′′ ≈ [β (LxK

) , (1 − β) (Lx1
)], L′ ≈ [γ (LxK

) , (1 − γ) (Lx1
)], and L ≈

[δ (LxK
) , (1 − δ) (Lx1

)]. Because of G4 and L′′ �
∼ L′ � L, we have

β ≥ γ > δ. If we compare [α (L) , (1 − α)L′′] with [α (L′) , (1− α)L′′],
where α ∈ [0, 1], and applying G5 and G6 we have:

[α (L) , (1 − α) L′′]

≈ [α ([δ (LxK
) , (1 − δ) (Lx1

)]) , (1 − α) [β (LxK
) , (1 − β) (Lx1

)]]

≈ [(αδ + (1 − α)β) (LxK
) , α (1 − δ) + (1 − α) (1− β) (Lx1

)]
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(5)

[α (L′) , (1 − α)L′′]

≈ [α ([γ (LxK
) , (1 − γ) (Lx1

)]) , (1 − α) [β (LxK
) , (1 − β) (Lx1

)]]

≈ [(αγ + (1 − α)β) (LxK
) , α (1 − γ) + (1 − α) (1 − β) (Lx1

)]

(6)

This expression means a contradiction to the hypothesis. So, the
correct one must be L�

∼L′. The proof of cases b) and c) are analogous.

�

Now we are going to show that Statement 4 implies Statement 1; that
is, �

∼ on L satisfies CR and IR, then it satisfies CMC and IMC . First,
notice that IMC and IR are completely equivalents. Now we show
that if �

∼ on L satisfies IR and CR, then it satisfies CMC . For proving
that �

∼ satisfies CMC , we must prove that for every L, L′, L′′ ∈ L, the
sets:

{α ∈ [0, 1] | [α (L) , (1 − α) (L′′)] �∼ L′}

and
{

α ∈ [0, 1] |L′ �
∼

[

α (L) , (1 − α) (L
′′

)
]}

are closed ones in [0, 1]. Let L, L′, L′′ ∈ L be arbitrary lotteries.
Define:

A+ = {α ∈ [0, 1] | [α (L) , (1− α) (L′′)] �∼ L′}

and

A− = {α ∈ [0, 1] |L′ �
∼ [α (L) , (1 − α) (L′′)]} .

(7)

Let us analyze three cases:

a) L �
∼ L′ and L′′ �

∼ L′

If L � L′ and L′′ � L′, then A− = ∅ is a closed set as well as
A+ = [0, 1]. If L ≈ L′ and L′′ � L′, then A− = {1} and A+ = [0, 1]
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are closed sets. If L � L′ and L′′ ≈ L′, then A− = {0} and A+ = [0, 1]
are closed sets, too. If L ≈ L′ and L′′ ≈ L′, then A− = [0, 1] and
A+ = [0, 1] are closed sets, again.

b) L′ �
∼ L and L′ �

∼ L′′

If L′ � L and L′ � L′′, then A− = [0, 1] and A+ = ∅. If L′ ≈ L and
L′ � L′′, then A− = [0, 1] and A+ = {1}. If L′ � L and L′ ≈ L′′,
then A− = [0, 1] and A+ = {0}. In all these cases, both sets are
closed.

c) L � L′ � L′′

Because of CR, there exists α ∈ (0, 1) such that L′ ≈ [α (L) , (1 − α)L′′],
which implies A+ ∩ A− 6= ∅. The uniqueness of α follows from the
first part of the proof of the theorem due to IR, and then A− = [0, α]
and A+ = [α, 1] are closed sets. So, this fact finishes the proof.

4. Conclusions

As the main result of this paper, we show the equivalence among four
textbook axiomatic systems regarding the expected utility theorem
given by four authors. This implies that the objects satisfying the four
axiomatic systems coincide. Also, we provide a common language
for the space of lotteries, the simplification of a lottery, and their
composition. These kinds of results could help the understanding of
the logic and objects involved in different treatments of the expected
utility theory.

Acknowledgements

CONACyT sponsored Karla Flores-Zarur with a master’s scholarship.

Karla Flores Zarur: karla.zarur@uaslp.mx; William José Olvera López: william.olvera@
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