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Resumen: Este documento estudia la posibilidad de inconsis­
tencia delosestimadoresdemáxima verosimilitud 
para ciertos modelos heteroscedásticos de regre­
sión. Estos incluyen el modelo de regresión de 
Poisson y los modelos A R C H . 

A b s t r a c t : This paper studies the possibility of inconsis­
tency of the maximum likelihood estimators for 
certain heteroskedastic regression models. These 
include the Poisson regression model and the 
A R C H models. 

1. Introduction 

One of the conventions that underlies the general linear model is that the error 
variance is a constant. Acceptance of this convention in applied work is 
widespread, possibly because it is difficult to specify any alternative deemed 
plausible by al l . Moreover, it is well known that the ordinary least squares 
(OLS) estimator remains consistent in the presence of heteroskedasticity, while 
the generalized least squares (GLS) estimator also shares this property even if 
the assumed form of heteroskedasticity is incorrect. Where the effects of 
u n k n o w n heterogeneity in the errors is felt is in the second moment but, as a 
consequence of work by White (1980) and others, inferences from the OLS and 
GLS estimators may be made robust to this imperfect knowledge. 

* We are grateful to Rob Engle, Ron Gallant, Sastry Pantula and Hashem Pesaran 
for comments. This paper was written while Sabau was at the Australian National 
University. 
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These properties make OLS and GLS attractive estimators. But there are a 
number of cases where OLS and GLS have been by-passed in favor of the 
maximum likelihood estimator (MLE), because the heteroskedasticity is argued 
to depend upon the parameters entering the conditional mean of the regres­
sion function. A m e m i y a (1973) studied a model in which the error variance 
changed as the square of the mean part of the regression function, and his MLE 
has been made an option in the RATS program. A related approach is the 
Poisson regression model that has the variance as a linear function of the 
conditional mean; this formulation arises naturally i n the analysis of count 
data models of the type studied in Griliches et al . (1984). A final example is 
the development and use of the A R C H class of models in which the variance 
is made a function of the square of past errors (Engle, 1982). 

A l l of the above have two features in common. First, the heteroskedas­
ticity in the linear model is assumed to be dependent, i n t e r a l i a , upon 
parameters entering into the conditional mean part of the regression function. 
Second, est imation is general ly per formed by m a x i m u m l i k e l i h o o d , 
presumably to gain efficiency by exploiting the connection between the 
conditional mean and variance parameters. However, as observed b y Carroll 
and Ruppert (1982), this l ink creates the possibility that the M L E of the 
conditional mean parameters w i l l be inconsistent if the assumed nature of the 
heteroskedasticity is inval id . Thus, in a bid to improve efficiency, it is possible 
that the end result is inconsistency. 1 

Section 2 of this paper examines the ."actors that would lead to such an 
inconsistency. For the Amemiya and Poisson regression specifications, Sec­
tion 3 shows that inconsistency is almost always a consequence of mis-
specification. For pure A R C H models, however, the outcome is not as definite, 
and we eventually find in Section 4 that either the presence of non-normality 
in the errors or particular types of alternative conditional variances is needed 
for inconsistency to emerge. A s we argue later, however, such alternatives are 
quite l ikely in empirical modeling. -Section 5 draws some conclusions about 
the advisability of M L E estimation of heteroskedastic models. 

2. Consistency of the M L E and Specification Error 

The model to be analyzed is the linear model 

y, = .v,p + <?, (1) 

1 There are also models in which the conditional variance is assumed part of the 
conditional mean; e.g., the ARCH-M model of Engle et al. (1987). For these, mis-specifi­
cation of the variance must lead to inconsistency in estimators of some of the parameters 
in the conditional mean. 
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where x , is a (1 x k ) vector of weakly exogenous variables and et, conditional 

upon F,, the sigma field generated by , z , _ ; , <?,_;_ [}~_ , is assumed 

normal wi th zero mean and variance h r z, is a process that w o u l d be weakly 
exogenous to a correctly specified model. Its nature w i l l become clearer later. 
A s the heteroskedasticity represented by h , may be parameterized in a number 
of different ways, we s imply define the complete vector of parameters to be 
estimated as 9 , a p x l vector, denoting the residual ( p - K ) parameters as 
a , i.e. 0' = (p'a ' ) . A t a m i n i m u m p w o u l d be ( K + 1), occurring when h t was 
constant. 

U n d e r the above assumptions the assumed log l ikel ihood for observe 

data { y , , J C , } ^ , normalized by the sample size, w i l l be 

T T 

V = - (1/2) Iog2n- ( 2 7 ) - ' £ log*, - { I T T ^ h j H y - x f i j 1 + r - ' log(pdf (y0)) (2) 
/= l i = \ 

= (-1/2) \ o g 2 n + L + T'1 log(pdf ( y 0 ) ) . (3) 

In what follows we ignore the first and last terms in (2), assuming that they 
are dominated by the middle terms L . The MLE of 9 , $ , is obtained by solving 
</e(9) = 0 , where </„ = d L I dQ . If the model is correctly specified it is generally 
the case that 6 A 6 0 , the true value of 6 0 , and we assume that sufficient 
regularity attaches to the problem for this to be true. When the model is 
mis-specified, 6 is the pseudo-MLE and ^ A 9*, where 6* is the pseudo-true 
value of 0 and w i l l be characterized by Lemma 1. 

L E M M A 1. The p s e u d o - m a x i m u m l i k e l i h o o d e s t i m a t o r 6 is assumed t o converge 
a l m o s t s u r e l y t o t h e p s e u d o - t r u e v a l u e of 0 , 0*, w h i c h is t h e s o l u t i o n of 

E(rf9(e*)) = 0 , (4) 

where t h e e x p e c t a t i o n is taken w i t h respect t o t h e t r u e p r o b a b i l i t y measure. If 
0* = 6 0 , 0 is a c o n s i s t e n t e s t i m a t o r u n d e r m i s - s p e c i f i c a t i o n . 

Exactly what conditions upon F, are needed to ensure that Lemma 1 holds 
w i l l not be detailed here, as it forms the basis of a number of papers by, among 
others, Domowitz and White (1982) and Gourieroux et al. (1984). It is also 
clear from the use of the average score that we have ruled out the non-ergodic 
A R I M A processes as generating mechanisms for x , . A s might be expected, 
in theory coefficients associated with any .v, exhibiting such behaviour can be 
consistently estimated by M L E under certain types of mis-specification of the 
heteroskedastic pattern. In practice one finds that many models are specified 
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such that regressors have been either direct ly transformed to stationarity 
b y the use of ratios or differences, or have been effectively rendered stationary 
in estimation by the method of accounting for extensive serial correlation i n 
the error terms; e.g. in Mishkin 's (1982) and Barro's and Rush's (1980) work 
there is close to unit roots in the autoregressive error term. 

N o w it is clearly impossible that any model can be mis-specified and yet 
all parameters be consistently estimated. What is at issue here, however, is the 
possibility of consistently estimating (by MLE) the sub-vector P 0 . For this 
purpose it is Lemma 2 that is of greatest import. 

L E M M A 2 . J / r f p ( B 0 , a * ) - E ( i / p ( P 0 , a * ) ) A 0 a n d H m ( 9 ) + 7^(0) A o « s T - 4 - , 

w h e r e H m = - d 2 L I 3096', 1 m = - l i m E ( H m ) > 0 , a n d 0 ^ 0 * , « necessary a n d 

sufficient c o n d i t i o n f o r $ t o c o n s i s t e n c y e s t i m a t e P 0 i s that E(rf p(p 0 , a*)) = 0 . 

PROOF. Necessity follows from Lemma 1. For sufficiency expand rf„(p\ a) = 0 
around rfp(P*, a*) to get 

rfptf, &) = 0 = dp(p*, a') + H ^ m t ~ P*) + / V W a - a * ) , (5) 

where 0 lies between 0* and § . Under the assumptions (5) becomes 

0 = rfpflT, a*) - /pp(p*. a*)($ - p*) - /p„(P*, o*)(o - a*) + o p { \ ) . (6) 

Since a " a * , f - p o A 0 provided /pp(9*) > 0 and 

</p(P0, a*) - E W p ( p 0 , a*)) A 0, E(rf p(P 0, a*)) = 0 

is a sufficient condition as wel l . • 

We n o w have to introduce the true form of heteroskedasticity, and this is 
done b y assuming that the density of e t , conditional upon F,, is actually 
N ( 0 , h , ) . N o precise specification of h , w i l l be provided, but the conditions 
needed for Lemmas 1 and 2 to hold clearly restrict it; e.g. it w o u l d be necessary 
that E ( h ^ < oo , and in certain cases higher order moments of the random 
variable h t would need to be bounded as wel l . The assumption of conditional 
normality means that any inconsistency in the MLE is due to pure mis-
specification of the heteroskedasticity i.e. postulating it to be h t when it is 
really \ , although, as noted later, density and heteroskedasticity mis-
specification interact, and the consequences of one depend critically upon the 
val idi ty of the other assumption. 
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For a benchmark, it is useful to begin with the case where h , has been 
specified solely as a function of a . Theorem 1 deals with that instance. 

THEOREM 1. // e, is c o n d i t i o n a l l y n o r m a l w i t h E(e, \F,) = 0, E(e] I F , ) = h , , h , is 
n o t specified as a f u n c t i o n of P , and the r e s t r i c t i o n s on F, f r o m Lemma 2 hold, 

PROOF. The pseudo-score d p is 

d V = T~X Z ( . V , " * , P ) * , V <6> 
i 

.-. E(r/p(p0, a*)) = E [ E ( T - 1 £ f j , - x f i o X W ' 1 1 F f l • <7> 
i 

Since x t and h * = K F , , a * ) are functions of F,, and E ( y , - x f i 0 I F , ) = 0 , (7) is 
zero and the necessary and sufficient condition of Lemma 2 is satisfied. • 

Theorem 1 is the well k n o w n result that the GLS estimator (which is 
identical to the M L E under these circumstances) remains consistent in the 
presence of mis-specified heteroskedasticity. Its proof makes apparent that 
such a theorem is unl ikely to extend to cases where h t is made a function of 
P . For the wider class of problems Theorem 2 below takes the necessary and 
sufficient condition of Lemma 2 and re-states it in a more useful form for 
isolating cases where ft w i l l be inconsistent. 

THEOREM 2. U n d e r the same c o n d i t i o n s on F, as Theorem 1 and Lemma 2, except 
t h a t h , = h(F,, a, P ) , ft is an i n c o n s i s t e n t estimator of P whenever 

Urn E(T£( h , - h * t ) ( d h , I ap iG*)^) - 2 ) *0 . (8) 

PROOF. Differentiating L in (3) with respect to p gives 

rfp = ( l / 2 ) r - 1 £ ( ^ 1 ( y , - . r , p ) 2 - l ) 0 / I , / 3 p ) / / 7 1 + T - ^ ( y - x f i ) x l ' h J i . (9) 

Therefore - £(rf p(p 0 , a*)) = 0 iff 

Hm 7 - ' X ((//p-i h t - l ) ( d h t / t y ( Q * ) ) ( h ; ) - : 0 

using the properties that E ( ( y l - x f i 0 ) 2 \ F , ) = h , and E ( y , - x f i ^ F t ) = 0 . Then, if 

l i m T - ' E 
7 - _ > « , 

I ( V W / a p ( e ' ) ) ( 7 0 - 2 
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E(rfp(P 0 ,a*) )^0 

and the necessary condition for ft to be consistent is violated. • 

The remainder of this paper consists of checking (8) for various specifica­
tions of h , and h , . 

3. Consistency of the M L E in the Amemiya and Poisson M o d e l s 

In this section of the paper the assumed heteroskedasticity, \ , w i l l be either the 
form adopted by Amemiya (1973) (/i, = a(.v,P) 2) or the Poisson regression model 
( h , = x f i ) . There have been a number of applications of both of these models, and 
there has also been concern that the form of the heteroskedasticity implied 
might be too rigid. In particular, in some applications of the Poisson model 
there appears to be over - o r under - dispersion; i.e. the exponent of .r,P should 
not be unity (Cox, 1984, and Cameron and Trivedi, 1985). In the fol lowing 
analysis therefore the true form of heteroskedasticity w i l l be to set h , = z , y , 
where z, is a 1 x q vector. 

THEOREM 3. J/z,y* x , P , t h e MLE of P i n t h e Poisson regression model is g e n e r a l l y 
i n c o n s i s t e n t . 

PROOF. Evaluating (8) with h , = x f i and h , = z,y gives 

lim E ( 7 - « 5 > , Y - A,p 0)<U,p 0)-2) * 0 

or l i m E f T - ^ i x / z i f - x i x f i ^ x f i o ) - 1 ) ^ . (10) 

Let x, = ( ^ P Q ) - 1 * , , z, = ( x f i j r h , . Then (10) is 

lim E ( T x ; l , y - i ; x f i Q ) ) * 0 
7"-» °» i 

or h m E ( T - l X ' Z y - T - l X ' X P 0 ) * 0 , (11) 

where X and Z a r e T x K and T x q matrices with x , and z ( as i ' throws. 
Clearly, since X and Z do not depend on y , if (11) was zero for some y, 

say y * , to remain so for arbitrary y it would be necessary that the derivative 
of (11) with respect to y at y = y * be zero i.e. X ' Z = 0 , which w i l l generally 
not be true. • 
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The analysis for Amemiya 's model is more involved, but the conclusion 
is essentially the same. 

THEOREM 4. If z , y * a(x,p 0 ) 2 , t h e M L E of P i n A m e m i y a ' s model is g e n e r a l l y 
i n c o n s i s t e n t . 

PROOF. Substituting h , = z , y , h , = a ( * , p 0 ) 2 , / dp = 2 a x t ' x f i , (8) becomes 

lim E i F - ' X 2[ .v , 'z ,y- j r ,\P o a*( .r r P o ) l (aT 1 (x ,p 0 r 3 ) * 0 
7"-» ~> i 

which could be written as 

l i m r - 1 X 2 [ I ( ' I , Y - ^ ' I , P 0 a * ( . v , P 0 ) ] ( a * r 1 ( . v , P 0 r 1 * 0 (12) 
7"-»~> i 

where x = ( x f i 0 r l x , and I, = (.v,P n) _ Iz,. 

= lim ( T - ^ 2 \ x ; z , y ( a . r l W - 1 - x , ' x f i 0 ] ) * 0 . (13) 
7-->~ 

For (13) to be zero 

lim E i J - > X ( x , ' z i y ) ( x f i 0 ) - i - « * l i ; * = 0 , (14) 

and this is a system of K equations which generally cannot be satisfied by a 
single value for a * . In fact, if P* is to be %,a. = T - ^ x $ r 2 ( y , - x $ ) 2 and 

There is one situation in which the value of a* satisfying (14) is equal to 
T ^ J j f f i x f i g T 1 . If K = 1 , without loss of generality p 0 can be set to unity , 

and (14) holds for the pseudo true value a* = T - 1 Y / , y x J l , since x , = 1 . Of 

course this is not surprising, as the MLE of p is just the weighted least squares 
estimator wi th w e i g h t s ^ 1 . For the more realistic multi-dimensional situation, 
whilst it is not possible to assert that (14) cannot hold it is very unlikely. 

From the results of this section it would not seem a very wise strategy to 
work with either the Poisson or Amemiya-type models of heteroskedasticity, 
as the r isk of inconsistency in the ft seems h igh . There are alternative 
estimators of p, OLS and GLS, which are consistent, and there are semi-
parametric GLS estimators of P that are as asymptotically efficient as the MLE 
yet presume no knowledge of the heteroskedasticity -Robinson (1986), Newey 
(1986). Hence, these estimators seem very attractive alternatives, although 
their small sample performance remains to be investigated. At the very least 
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it w o u l d seem important for users of these models to compare the M L E of p 
wi th a consistent estimator such as OLS. There is a very close connection 
between this idea and the residual-based tests forover -andunder -d ispers ion 
considered by Cameron and Trevidi (1985). 

4. Consistency of the M L E in ARCH Models 

Engle (1982) argued that it was more appropiate in time series models to 
assume that the variance of the error term was a function of elements in F,, 
than to presume the traditional v iew that it was constant. Since many 
economic models come from orthogonality relations that set conditional 
expectations to zero values, Hansen and Singleton (1982), this is an important 
observation. Of course, the nature of the conditioning must be made precise 
for parametric estimation, and Engle suggested that a useful class to consider 

<t 
w o u l d be the ARCHty) process It, = OQ + £ a-e2-. M a n y applications of this 

J = i 

model have been made -Engle and Bollerslev (1986)- but concern has also 
arisen over whether the class is too restrictive, and a number of alternatives 
have been proposed in the literature. Weiss (1984) for example estimated 
patterns of the form h t = a 0 + ]T a,. e2_j + 80(E(v,IF,))2 + ¿ 8 , . y 2 _ j , and found that 

the estimates of & k ( k = 0 , r ) were frequently non-zen/for" economic time series. 
To fully analyze the consequences of mistakenly taking the heteroskedas-

tic pattern to be ARCHty) rather than an alternative candidate requires the 
fol lowing lemma. 

L E M M A 3 . L e t %bea s y m m e t r i c a l l y d i s t r i b u t e d ( a r o u n d zero) a b s o l u t e l y c o n t i n u o u s 
r a n d o m v a r i a b l e w i t h d e n s i t y , c o n d i t i o n a l u p o n some-sigma f i e l d F,/(£,). L e t y be 
a Borel f u n c t i o n measurable w i t h respect t o F such t h a t = - y ( - £ ) i.e. is 
c o n d i t i o n a l l y odd i n %, and assume t h a t E(\\i(£,) I F ) e x i s t s . T h e n (̂v|/(̂ ) I F ) = 0 . 

PROOF. E(y(§\F) = i°° V(£)/(S)4 
— oo 

— oo 0 

— oo — oo 

from symmetry of the conditional density around zero and V|/(̂ ) = -»|/(-^). • 
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A s in the preceding section it is necessary to postulate alternative expres­
sions for the true heteroskedasticity, and then to evaluate (8). It is easiest to 
understand the impact of mis-specification of the variance of e, upon 0 if the 
nature of h , is allowed to be more general in stages. First, suppose that the true 

variance h , is an even function of et_ , , conditional upon Ff_ , = {<?,_,•}"_ . 

Theorem 5 proves that the M L E of p is consistent against such an alternative. 

THEOREM 5. // h , is a n even f u n c t i o n ofe,_x c o n d i t i o n a l u p o n Ff _ , = {e, _ y j ~ , 

and e. is sy m e t r i c a l l y d i s t r i b u t e d a r o u n d zero, c o n d i t i o n a l u p o n F t , t h e M L E o f p i n 
i 

( V , w h e n h t is assumed t o e x h i b i t Engle's A R C H ( q ) process ( h , = a0 + £<x. e]_ ) , 
is a c o n s i s t e n t e s t i m a t o r of P 0 . i = i 

PROOF. From Engle (1982) It, is a conditionally even function of e, _ , while 
d h , 19P is a conditionally odd function. Us ing (8), Lemma 3, and the l a w of 
iterated expectations, E ( l / l ^ V i , - h * ) d h l / t y ( Q * ) ( h * ) - 2 ) = 0 whenever h , is a 
conditionally even function of e,_ { . m 

Theorem 5 covers some interesting alternatives, most notably if h , is 
A R C H of order higher than that assumed, if it follows Bollerslev's (1986) 
C A R C H process, i.e. h , = S h , _ , + aej_ { , or Geweke's (1986) suggestion that 
\oght = a 0 + a ^ l o g i - 2 , ; . Observe that symmetry in the conditional distribu­
tion of et is quite crucial. Provided the standard A R C H assumption of nor­
mality is v a l i d . Theorem 5 provides the M L E of P with a degree of robustness 
to mis-specification in the variance, which is a comforting result. 

Theorem 5 may be extended by regarding h , as composed of two different 
elements, 0, and y , . <j)( w i l l be taken to be a function of F\ = {3c, _ f alone, 

where 3?, are those members of x , e x c l u d i n g lagged values of y t , while y , is 
an odd function of e,_l conditional upon Ff _ , and F", . 

THEOREM 6. L e t x , be s t r o n g l y exogenous v a r i a b l e s and t h e t r u e h e t e r o s k e d a s t i c i t y 
be represented by h , = <KF?. a) + y(F^_ x , F*, a ) , where \|/ is a n odd f u n c t i o n of 
e,_ , c o n d i t i o n a l u p o n Fe

t_, and F* . If t h e d i s t r i b u t i o n of et, c o n d i t i o n a l u p o n 
F,, is s y m m e t r i c a r o u n d zero, and h , is i m m l i d l y assumed t o e x h i b i t Engle's ( 1 9 8 2 ) 
A R C H ( q ) process, t h e M L E o/P i n ( 1 ) is a c o n s i s t e n t e s t i m a t o r of P 0 . 

PROOF. A s in Theorem 5 we verify that the necessary and sufficient condition 
of L e m m a 2 is satisfied. Substituting for h , in (8) it is necessary that 

(15) 
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The term E f t f i l i , I E)p(6*)(Ap-2) = 0 since d h , 13P(0*) is an o d d function 
of conditonal upon Ff_ , and . (15) therefore holds if 

£(V,0/i, / 3P(0*))(/i,*r2) = 0 . 

Because y , is a conditionally odd function of e,_,, it is not possible to apply 
L e m m a 3 to the product. However, 

<? 

'<, = «o + X «, 
j = i 

1 
so that d h , 13P = - 2 £ « _ ; , 

7 = 1 

making d h , I 3p(0*) = -2% a * * ' , (y, . - .r, p 0) . 
7=1 

If it can be shown that a* = 0 (j = 1 4), y f i h , 15P(6*)(/i*)-2 w i l l be identi­
cally zero. 

To demonstrate that a*, = 0 (/' = 1,..., q) necessitates proving that 
j 

lim E ( d ( m 0 , , a* = 0 a* = 0)) = 0 , 
7"-» ~ j . 

where a 0 - lim (7) £(<t)
() 

7-_^ 00 ; = j 

since the ultimate aim is to show that 

lim E(</ B(P 0 , ̂  , a* = 0 , . . . , a* = 0)) = 0 , 
T - > ~ 

this means that a * = 0 satisfies rfH(0*) = 0 . 
N o w 

lim T->£(«/„ (p 0 , « ( * , 0)) = (27->)E( Y a h ^ T i , - W ^ / d a ^ d d * ) ^ ) (16} 

where the zero in dn (•) represents rx; = 0 (j = 1,..., q ) . 
0 

= lim ( 2 T ) - l E ( X ( K r ' ( ( « t > , + v , ) - D K ) - 1 ) • (17) 
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(17) is zero if a* = lim (Tr^E®,) as E(y ( ) = 0 because it is a condit ion-
7 " - » ° ° 

ally odd function of .Examin ing da we get 

lhn E ( d a ( p 0 , ^ , 0)) = lim (27)-'E( £ ( ( / i , * r V 1V?_ ;(/»*)"') (18) 

= l i m ( 2 7 ) - ' E ( X ( ( a S r 1 ( ^ + V , ) - l ) e 2 _ K ) - 1 ) . (19) 

But because y , c
2 _ ; is a conditionally odd function of e , _ , 

= lim (2T)-'E( X ( ( a ; r ' ( i . , - D ^ / o J r 1 ) (20) 

= lim (27)-'E(X((a (*)- 1 E«!,,) - D o V j ) - 1 ) , (21) 

due to the strong exogeneity of if,. 

= 0 

' T 
when = lim T - 1 ^ E ^ , ) . 

r-> ~> i = i 

Consequently, a*u..., a* are zero and (17) holds, so that the necessary 
and sufficient condition of Theorem 2 is satisfied making $ consistent. • 

Theorem 6 broadens the range of models that the M L E of B inanARCHO/) 
model is robust too, although the heterogeneity described in Theorem 6 may 
be a rarity. One example however, would be if h , followed the Poisson specifica­
tion and x , contained y, _ , . Note once again that the assumption of conditional 
symmetry for the density of the e, (or more precisely E ( e ^ \ F , ) = 0 ) is critical 
to the outcome, so that it is possible for $ to be inconsistent when \ is conditionally 
odd in et _ , provided only that the error density is non-symmetric. 

Theorem 6 also seems to be of some independent interest since it shows 
that there exist types of heteroskedasticity that would give zero values for the 
a*(j= 1 , . . . , q) , i.e. the A R C H parameter estimates would not reflect this 
mis-specification at al l . In these instances, any A R C H test performed to 
determine if conditional heteroskedasticity had been accounted for, an option 
in Hendry ' s GIVE and Pesarans' DFIT micro-computer packages, w o u l d not 
be powerful , as the deficiency would not be revealed by the estimated values 
of the A R C H parameters. For robustness of theMLE of B though, this outcome 
is a good one, as the mis-specification does not contaminate that estimator, 
provided distributional symmetry for c, is appropriate. 
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Finally, the most general type of decomposition of h , w o u l d be to a d d 
on to 4>, and vy, above a term n , that was a conditionally even function of 
e, _ j ; in many instances it should prove possible to decompose any alternative 
specification for Jit into three such components. For example 

h = a0 + a]y2_, = oc0 + a,(,v,_ ,B + e,_ , ) 2 

= a 0 + a^'x;_, x, _ , B + 2a,B'*/_ , ^ . , + 0 ^ . , 

and, if x , is strongly exogenous, setting 0, = a 0 + a f i ' x t ' _ , x,_ , B , 

V, = 2 a 1 B ' A / _ 1 e,_l and 

T i ^ a , ^ , w o u l d define h , . 

THEOREM 7. 7/ x , is s t r o n g l y exogenous, h , = <j>, + y ( + n , , where <(>, and y , are 
us in Tfeorem 6 TO///fe T|, IS an even f u n c t i o n ofe,_l c o n d i t i o n a l u p o n 7*_,, and 
the other c o n d i t i o n s of Theorem 6 are satisfied, the M L E of p i n ( V is g e n e r a l l y an 
i n c o n s i s t e n t estimator o/ B 0 . 

PROOF. The proof proceeds by observing that the presence of y , in h , means 
that a] ... a* have to be zero if ft is to be consistent (see the proof of Theorem 
6). (17) w i l l then be zero only if is 

T 
l i m 7 - - ' E £ > , + r|,)) 

as Tj, is a conditionally even function of e, _ , , while (20) and (21) w i l l be zero 
only if 

T 

l i r n T - 1 y E W a S r ' ^ + T l , ) - l) i?_:) = 0 . 
T - > - , = l 

But the value of 
T 

a ^ l i m T - ' Jjb, + t\t) 

w i l l almost never satisfy this latter requirement as T|, and e 2 • are correlated. 
For example, wi th T|( = axe2_ , , a* from (20) would not involve . • 

Theorem 7 is a blow against the robustness of the M L E of A R C H models, 
provided alternatives such as h , = a0 + axy2_, are regarded as being plausible 
alternatives or if it is felt that the presence of conditionally odd and even terms 
i n h , are necessary. In fact there seems to be emerging evidence that this is so 
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for some time series. Nelson (1986) cites Black (1976) and Christie (1982) as 
showing that positive values of y f are associated wi th a smaller value of 
h, than negative values are, and he develops a specification for h, that is neither 
purely conditionally odd nor even to account for financial asset price move­
ments. Weiss (1984) finds that the terms [E{yt I Ft)]2 or y 2 _ , appear along 
with an A R C H ( A ) effect in many of his estimated variances. Since y, i s A R M A 
in his case, this induces terms such as y ) _ , into the variance specification, 
whose presence w o u l d cause the M L E of B to be inconsistent. Finally, a 
competing specification to A R C H processes would be random coefficient 
autoregressions, studied extensively by Nicholls and Q u i n n (1982), which 
have terms such as y ] _ j in the variance. 
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