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Resumen: Este artículo presenta una clase de pruebas de 
consistencia en la especificación de modelos hete-
roscedásticos y de riesgo. Las pruebas están 
relacionadas con otras ya conocidas, tales como 
las pruebas de momentos de Newey y Tauchen, 
las de Hausman, las de White, las de multi
plicadores de Lagrange de Engle y Pagan, y el 
análisis de residuos de Pagan y Hall. Se analiza 
la potencia de las pruebas de consistencia en 
presencia de desviaciones locales y se reexa
mina el modelo de Engle, Lilien y Robins. 

Abstract: This paper considers a class of consistency tests 
for the specification of heteroskedastic and risk 
models. The tests are related to other proce
dures such as the conditional moment tests of 
Newey and Tauchen, Hausman's tests, White's 
tests, the variable addition Lagrange multiplier 
tests of Engle and Pagan, and the residual analy
sis of Pagan and Hall. The power of the consis
tency tests in the presence of local departures is 
analyzed and the risk premia model of Engle, 
Lilien and Robins is re-assessed. 

1. Introduction 

In a previous paper (Pagan and Sabau, 1991) we have analyzed the consis-
tencyof the MLE for the parameters of heteroskedastic models of the form 

y,\F,~N[JC,P,/i,(P,a) = h,(Q)] , (1) 
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where the conditioning information set is the o-field generated by 
\ x * _ : , v, •_, ) " „ , the x * _ . being those elements of x , which are weakly 
exogenous variables for the parameter vector 6 in the sense of Engle et al. 
(1983); the 1 x k vector x , and the scalar h , are measurable functions of F,, and 
the parameter vector 9 = (P'( a')' is /> x 1, with P being k x 1 and a being 
( p - k ) x l . 

Implicitly assuming that the parameters of interest are functions of p, our 
attention was centered on the robustness of the MLE $, say, to misspecifica-
tions in the conditional variance h t , extending the work of Carroll and 
Ruppert (1982). By obtaining a necessary condition for consistency using 
Domowitz and White's (1982) quasi-ML approach, we concluded that 
misspecification of h , will in general induce inconsistency in p\ An exception 
is, of course, the case when It, is not parameterized in terms of P, in which case 
GLS and ML are equivalent. When h , is proportional to (x,P)2 as in Amemiya 
(1973), or for the Poisson-type model (h, = xfi) used in count data (Hausman 
et al., 1984), very unlikely conditions would need to be met to avoid inconsis
tency. 

A particularly interesting case occurs when an ARCH regression (Engle, 
1982a), or more generally a GARCH regression (Bollerslev, 1986) model has 
been estimated, but h, does not follow such a process. Then we found that, 
if the innovations u = y t - xfi are symmetrically distributed, the consistency 
of $ hinges on whether h f is an odd or even function of H , conditional upon 
F1; = {«,_ •} ~ , (a- field). Therefore $ was robust to misspecification of the 
orders of the GARCH process, or to misspecification within the class of 
symmetric ARCH processes (Engle, 1982a, see also Geweke, 1986, and Engle 
and Bollerslev, 1986) or when the true conditional distribution is Strudent's 
t as suggested by the latter authors. However, when the true conditional 
variance is the sum of a conditionally odd and a conditionally even terms in 

it is found that $ will generally be inconsistent. This also happens when 
the innovations are not symmetrically distributed which emphasizes the 
need for a careful assessment of the normality assumption, a task undertaken 
in Sabau (1987b). 

If a risk term, defined as a function of the conditional variance, affects 
the conditional mean as in the ARCH-M model (Domowitz and Hakkio, 1985, 
Engle et al., 1987) inconsistency will result because misspecification of the 
conditional variance now implies misspecification of the conditional mean. 
In our previous paper we did not explicitly consider this type of model since 
the conclusion is an obvious extension of standard misspecification analysis 
of regression functions. 

The situation recounted above suggests that applied workers using 
parametric specifications of A, need to be concerned that any failure to specify 
h , correctly may contaminate the estimates of p, which is what they are 
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normally primarily interested in. One possibility is to develop robust estima
tion procedures, particularly GLS, which remain consistent in the presence of 
misspecified heteroskedasticity. In fact, there are now semiparametric GLS es
timators that are asymptotically as efficient as parametric GLS yet presume no 
knowledge of the heteroskedasticity (Carroll, 1982, Robinson, 1987, Newey, 
1986). This approach does not seem yet a favored one, however, and it is hard 
to see how it would be done when parameters in the conditional variance feed 
back into the conditional mean, as in the ARCH-M model, because the information 
matrix can not be diagonalized as GLS procedures demand. Consequently, if 
researchers are going to continue to use MLE's in the models described above, 
it is important that some information be provided along with the MLE's to assess 
the validity of the chosen specification. 

There are, of course, many diagnostic tests for incorrect specifications in 
the conditional mean and variances of the general linear model -Pagan 
(1984a) surveys these- and all might be applied. But it is always useful to 
have some tests that utilize information that is available solely within the 
estimated model, since this can be provided with computer output. For this 
reason in section 2 we argue for what we call a set of "consistency tests". 
Simple examples are that the MLE residuals sum to zero and that the 
postulated heteroskedastic pattern conforms to the evidence in the squared 
residuals. These are functions of the output of any MLE program and so could 
be supplied along with standard results from it. Also in section 2 we relate 
these "consistency tests" to other procedures in the literature. Section 3 of the 
paper finds the asymptotic distribution of the proposed test-statistics under 
the null hypothesis of correct specification and under sequences of local 
parametric alternatives. In section 4 we make local power comparisons and 
it is shown that the power of the simpler tests depends upon the extent of the 
incosistency of the MLE of the conditional mean parameters, so that the tests 
directly address what it is about the MLE which concerns us. In section 5 we 
use consistency tests to re-assess the adequacy of the ARCH parameterization 
used by Engle, Lilien and Robins (1987) in their model for risk premia in the 
term structure of interest rates, and find some evidence of specification error. 
Concluding remarks are given in section 6. 

2. Consistency Tests of the Heteroskedastic Formulation 

The possibility that the MLE of p might inconsistently estimate pp, the true 
value of P, motivates the development of tests for the adequacy of the 
assumed heteroskedastic specification. To appreciate our choices consider the 
score for 9 (normalized by the sample sizeT), say ¿„(9) = (<*,j(9)Va(9)')', 
given by (e.g. Engle, 1982a) 
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T . T 
dfffi) = 2- 1 2*T , * i '« i + p ' - t j j t f w f o , (2a) 

(=1 z r=l 
and 1 T 

dam = jT-lJihjh'lel, (2b) 
(=i 

where wt = dh/d$', z, = dh/dct'; and «, = y, - x f i and e( = uf - h t are the in
novations of the conditional mean and conditional variance equations, 
respectively. 

Under the conditions set out in Domowitz and White (1982), E [dJ%*)\ = 0 
definesthepseudc>-truevaluee* = (fi*', a*')'of 9(i.e.@ 4 6*). Consistency obtains 
when, and only when, 0* = 0O. The necessary and sufficient condition for the 
consistency of fj is E [</p(P0 , a*)] = 0 (Lemma 2 of Pagan and Sabau, 1991). 
Unfortunately, dJ&) = 0 by construction and no test can be based on it. 
However, from (2a), sufficient conditions for E [rfp(P0, a*)] = 0 are 

T T 
E \T-'1A1*;«,]=o, E\T-'Xhfw;£,]=0 

1=1 [=1 

making it appropriate that tests for the adequacy of the assumed model be 
based upon these separate orthogonality conditions. Note that the MLE of p 
does not impose any of these restrictions on the data and separate estimators 
of P may be obtained from each of them (GLS estimators) with the MLE of P 
being the matrix weighted average of the two (Sabau, 1987a). 

At a more basic level, correct specification of the two conditional mo
ments requires E [«, I F , ] = 0, and E [e, I F , ] = 0, implying that 

T T 
E \ ^ u , ] = 0, E [£e , ] = 0 , 

i=i i=i 

T T 
and the simplicity of the latter constructs makes £ « , and £ e ( attractive 

<=i /=i 
of the adequacy of the model. We will refer to these as "consistency" tests, 
due to the fact that no internal information will be needed in their construc
tion, unlike most diagnostic tests which introduce new data supplied by 
postulating alternative models. Replacing the unknowns pand a by their 

T 
MLE's, the sample quantity T'1^, for example should tend in probability to 

i= l 
zero under the null hypothesis; if it does not, the evidence in the squared 
residuals uf is inconsistent with that in h . 
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For later use it is convenient to embed the tests described above in a wider 
class derived from sets of n first order conditions of the form 

T T 
ro(i> , 8) = T-'X'"/*,, 6) = T-'X<I>,u, = T~l<t>'v , (3) 

/=l i=l 

whereu,= («,, e,)> = (vi',...,v>Ty,<t> = (4>, O ^ a n d thei>,aren x 2matrices 
of measurable functions of F,. We assume the <D, and M, to obey the regularity, 
continuity, dominance and mixing conditions in assumptions (3) - (6) of 
Newey (1985b). The conditional covariance matrix ofu (isf2, = diag { h r 2 h j ). 
Thus the m,(<D,, 9) are n x 1 vectors and under correct specification we have 

E [m(<t>, 9)1 = 0 , (4) 

because E [m, I F t ] = tofi [v, IF,} = 0. The corresponding covariance matrix is 

V\m(<t> , 6 ) ] = E [T-WCl<t>] , (5) 

whereii = diag ( S I , ) , because E * f ' I F t ] = d^O, Q,0; with 5„ being the 
Kronecker delta. The two simple consistency tests described above are ob
tained by setting <Df = (1 ,0) V t and = (0,1) V t respectively, and a joint 
consistency test is obtained making O, = /2 V t. 

Corresponding to the theoretical moments in (4) are sample moments 
m(& , h and these are suitable "consistency test-statistics", since they would 
tend to be close to zero if the model specification was adequate. Our major 
problem with implementing these tests lies in the derivation of the limiting 
distribution of T ^ m f y , 9). Because G is obtained as the solution to a set of 
first order conditions, </e(6) = 0, it is apparent that m(i>, §) are conditional 
moment restrictions of the sort analyzed in Tauchen (1985) and Newey (1985a, 
b). The last paper is particularly relevant here and Theorem 1 in the next 
section is extracted from it. 

But before we obtain the distribution of the sample moments m ( & , 6), 
it is useful to look at these tests in somewhat greater detail and to relate them 
to other procedures in the literature in order to put them into the proper 
perspective. 

The simple consistency tests based on the sum of ML residuals, say 
is an interesting one because many diagnostic tests for specification error (e.g. 
RESET) arose because such a criterion was not available in the general linear 
model since the sum of OLS residuals is identically zero whenever an intercept 
appears among the regressors. It does not seem to have been fully ap
preciated in the literature that the residuals denned by other estimators need 
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not share this property. Suppose the OLS estimator of B in (1) is p , u. are 
T 

the corresponding residuals. Since J^u, = 0 we have that 
t = l 

R T T A A 

(=1 /=1 r=l 

and consequently the consistency test can be viewed as a specific weighted 
average of the difference between the ML and OLS estimators, when the 
weights are the sample means of the regressors. Since f$ is consistent irrespec
tive of the specification of the variance, the test-statistic focuses directly upon 
the inconsistency in the MLE of p. 

An alternative strategy for assessing the adequacy of the maintained 
model would be to directly compare $ and p, i.e. to conduct a specification 
test of the form given by Hausman (1978). In fact this was White's (1980) 
suggestion, and it can be regarded as a special case of the test-statistics 
considered in this section viz. when (x't , 0). To see this, observe that 

A J, A TV 

m ( X , P) = T~'2/,'", = T_1X «. But T ~lX'u = 0 and therefore 
<= l 

m(X , $ ) = T ~lX'u = T - T ( S - u) = T -'X'X(P - f ) , (7) 

so that m ( X , $) is a nonsingular transformation of (p - $) and hence has the 
same distribution. 

More generally, suppose that the orthogonality conditions 

T 
r - ' 5 > ? 5 ( = o 

<=i 

define the consistent estimator 9 where <&; includes as a submatrix i.e. a 
general method of moments (GMM) estimator as in Hansen (1982). Using the 
Mean Value Theorem for Random Functions (Jennrich, 1969), after expansion 
around 9 0 and grouping terms of O P ( T ~ X ) and smaller, we get 

« < * , ft) = r - i * A = r - i * , * , + T - ± * f ^ (d - 9 0 ) 

+ A T ( § - % ) + O P ( T - 1 ) 
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where g , = g,(8) = (xfi , /«,), and ^ r " 1 ^ , ' ® /„)dvec<&( /99'. Note that 

A T % 0 because avecO/99' is measurable function of F,. Therefore the term 
AT(Q - % ) is 0 p ( T ) and can be relegated to the remainder. The same expan
sion can be applied to m(4>, 9)which equals zero from theGMM definition of 
9. Then under the assumption of a correctly specified model we have 

T 
m(« , 9) = m(<J>, 9) - m(<t>, 9) = T"'X^A " T 

t = l 

= t ( § ~ * ] + ° p ( T _ 1 ) 

= T - x W G % ( Q - Q ) + O p ( T - x ) (8) 

where g = #r)', and G 9 = 3# / d & . Note that the relation will be exact if 
i>, is not a function of 0 and the relevant components of g , are linear in 0, as 
in the cases above with a linear mean and the test involving only the mean 
innovations through <D, = (1, 0) and <D, = (*,' , 0). 

Thus whenever * * = <&, so that 7-'<D'Ge converges to a nonsingular 
matrix (a regularity condition for the GMM procedure), we have a Hausman test 
asymptotically equivalent to our test in (3). When <D is a proper submatrix of <&* 
the consistency test being based asymptotically on linear combinations of 0 - 6\ 

Another special case of (8) of particular interest is when *,* = *,= 
( h j ] x ; ,0). Then 7--'<D'u = 0 defines the GLS estimator of P in (1), say jS, and 
w e have 

T-^x;u,-T-±hT^ugl 

i=i i=i 
T 

= ( T -> v » ) ( P , - P ) + ° P < - T " ' ) < 9 ) 

whichaiso relates to Hausman's (1978) procedure but now with GLS as the 
consistent estimator under the alternative. If there is a constant among the 

repressors then T-l2Jqlugt = 0,and redefining <t>, = ( h j l , 0 ) we get 
<= l 

r A r T 
T " 1 Z / ' 7 1 " , - 7 ' " 1 X i r 1 " s ( = 7 ' " 1 S / l 7 l A r i ( P « - ?>) + 0 p 0 " 1 ) . d°) 

(=i r = i /=i 
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which again centers on the inconsistency of p, since S is robust to variance 
misspecification. Here the differences of estimators are weighted by the 
sample mean of h j l x , . 

In the above illustrations, p came from a set of first order conditions 
involving u, only, and no attention was paid to the second orthogonality 
condition involving e(. This meant that consistency tests related to p - p. 
Similar relations can be found for the a parameters. For simplicity, take the case 
where h t = z,(p)a, which is the most common in aplied work. Let the simple 
least squares estimator (SLS) of a obtained from regressing u 2 on z (p) be 5. 
The residuals from this regression are e = u 1 - z (p)5. Assuming a constant in 

T i l l T 

z, we have T ~ l ^ j E t = 0 and, letting <&, = (0,1) we have for m ^ r ' ^ t , , 
/= l <=i 

T T 

r=l (=1 

T 

= r - 1 X z I ( a - « ) + o ; , (r- 1 ) 
1= 1 

= l { a - a ) + O p ( T - x ) . ( H ) 
When ®, = (0, 57), then 

m ( z A ) = T-^ = T - ^ - t ) + O p ( T - i ) 

= r- 1 Z'Z(6t-a) + 0„(T- 1 ) , (12) 

which are the counterparts for a of the weighted and full difference of OLS 
and ML estimators in (6) and (7). Note that in the expansions for (11) and (12) 
we have taken P as given because we want to concentrate on the a parameters. 
Substituting any consistent estimator of p in the construction of z or T ~ l Z Z 
will have no effect on the asymptotic distribution of the statistics. 

We can also consider the simple GLS (SGLS) estimator for a, say a 
obtained from the regression of uj on z,(p") in the metric of hf = (z,a)2, so that 
with = (0, h f ) and = (0, h f z ' , ) we get, respectively, 

T £/i72e, - T - 1 £ i 7 2 e s , = 7 - ' % h - \ ( a g - a) + O p ( T ) , (13) 
r=l t=l r=l 

and 

T-í'h^'A-T-lh;2?;zg,=cr-'i>72^,X5s - a) + i y r - i ) , (u> 
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as counterparts for a of (10) and (9). It is also easy to combine in a joint form 
like (8) mean and variance consistency statistics like (6) and (11), (7) and (12), 
(10) and (13), and (9) and (14). 

The consistency tests also arise as a natural application of residual 
analysis to diagnose the model (Pagan and Hall, 1983). This interpretation is 
considered later in section 5. Here let us take the closely related issue of 
variable addition (Pagan, 1984a). When variable addition tests are performed 
using the L M principle (e.g. Breusch and Pagan, 1980, Engle, 1982b, 1984) they 
take the form of the general consistency statistic in (3). Suppose a set of 
variables, say x A t , is added to the conditional mean in (1) with coefficients 
B^, and the conditional variance is augmented to /i,(6, 0 )̂. The additions in 
h t may be reflecting autonomous changes in the conditional variance 
specification as well as changes implied by the modification in the conditional 
mean. Therefore, QA includes B^. It is clear from (2) that the subvector of the 
score for 8̂  is 

d / Q , 8A) = T-'¿¿,(8 , e^- ' i ; , u M + U - ' ¿ ¿ , ( 8 , Q A T h % tM , 
;=1 L i = l 

where u A t = y , -JC ( B-x A j $ A , ^ , = (^,,0) , s\, = dh,(Q , 8A)/3e; , and eAt = 
U A , ~ hP > e A > - T h e n u n d e r Ho : 6 A = ° ' 

T j T 

d A ( & ) = T-'XV8)-1^ + - f - x Y j i f f i Y h A \ e,, (15) 
i=i " i=i 

where sAt = s'At evaluated at Q A = 0. The L M test for H 0 is based upon (15), and 
this is clearly a particular case of the general consistency test in (3) by making 

= ( h ; % f , \ l t j 2 s A l ) . We will use this in the next section to provide a 2 T R 2 

form for the L M tests in heteroskedastic and risk models, thus extending the 
resultsin Engle (1982b) to the case where there is a non-diagonal information 
matrixbetweenBand a. 

3. TheDistribution of Consistency Test-Statistics 

It is convenient to recast the model in (1) in a more general form that explicitly 
allows for risk terms in the conditional mean, and also clarify our treatment 
o f local alternatives which follows Newey (1985a, b). 

For the first of this issues, we will allow for risk terms only in so far as the 
risk measures are defined by characteristics of the conditional distribution, 
more specifically as functions of the conditional variance as in the A R C H - M 
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model. The reason for this is that we want to maintain a likelihood framework 
based on the conditional distribution alone. Inferences in the context of alien 
risk terms have been discussed by Pagan (1984b) and Pagan and Lilian (1987). 

Thus suppose that among the regressors in (1) we include h r The effect 
is that the conditional mean is no longer a linear function of p, but it is usually 
a nonlinear function of 9. Therefore we replace the model in (1) by the more 
general 

y , \ F , ~ N[u,(9), h,(9)] , (16) 

where \it = u,(9) is, of course, a measurable function off,. At a theoretical level, 
this has no effect on our previous arguments although restrictions on the 
parameters are induced by the requirement that the feedback between the 
conditional moments does not violate the basic regularity conditions i.e. it is 
not explosive. It is still the case that E [ d J $ 0 , a*)] = 0 provides the necessary 
and sufficient condition for the consistency of % as Lemmas 1 and 2 of Pagan 
and Sabau (1991) do not depend on the mean being parameterized as a 
function of p only. One would expect, however, that the presence of h, in the 
conditional mean would make remote the possibility of estimating p consis
tently under variance misspecification, a point we have already noted. 

The amended score corresponding to (16) is 

i=l ~ r=l " 

i= I 

where g , is redefined as g , = (u,, h ) . The derivatives with respect to 8 are more 
complex than previously and may be best computed numerically. Note that 
the relations in (6)-(15) are easily modified to cover the risk case. 

To consider local alternatives, we reparameterize (16) allowing for an 
extra set of parameters, say y T , depending on sample size so that 

>', I F, - N[u,(9 , y r ) , h t ( 8 , y T ) ] (18) 

and the dependence on sample size takes the form y T = Y0 + T _ 1 / 2 5 f o r f i x e d 

Y0 and 8. The parameterization is such that u, = u,(0) = (i((9 , y0) and 
h t = h t ( 9 ) = /i,(9 , y0) for all 9 e 0, or g t = g,(8) = g((9 , Y0) with 

S,(9,Y r) = (u,(9,Yr),/i,(e'Y7-))-
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That is, at 8 = 0 we obtain the null hypothesis in (16). As T increases, 
(18) approaches (16) at the required rate to keep the noncentrality para
meters finite in the distribution of the test-statistics, as shown below in 
Theorem 1. 

Corresponding to the sequence of local alternatives are the mean and 
variance innovations M,(Y

T
) = «,(8, y T ) = yt - u,(8, y T ) and 

e,(Y7-) = e,(8, y T ) = u,(.yT)2 - hffi, y T ) , 

with «, = «,(Y0) and e,= e,(y0) under the null hypothesis. Similarly, define 
U

,(Y
T
) = («,(Yr) . E,(Y

R
))' and v = v t ( y 0 ) . The derivatives of the log-likelihood 

function at observation I are 

d (6, Yr) = ' n X y T r \ ( y T ) , (19a) 

and 

Yr) 
d v ( Q , Yr) = ' Q,(Yr) u»(Yr)/ ( 1 9 b > 

where Q,(yr) = Q,(8 , yT) and Q, = £2,(8 , y0). The score for the /th observation 
under the null hypothesis is dQl = rf6((8, y0) and 

d 6 = d e m = T - i d S l . 
i = l 

The negative of the matrix of second derivatives with respect to 8 is 

dg,(6.Yr) fc>g,(e.Yr) 

wliere 

38 

r3g,(e,yT) 

88 ii,(Yr) _ 1 

wkicli b y using the law of iterated expectations is seen to have zero expected 
value under the local alternatives in (18). Therefore, the information matrix 
isgiïen by 

l(e 0) = ^ {7 - 1 2 ,Ver ' )=Ç< 7 , ~ , X ^ e ( ) = ^ î " " 1 G é i 2 " 1 G e } , (20) 
i= l 
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where = lim E [.], and all the expectations are evaluated at 6 0 . It is 

easlily seen that under the regularity conditions set out in Theorem 1 below, 
l(9 0) is the appropriate information matrix for 9 under both (16) and (18). 

Similarly,the matrix of derivatives of the statistic w ( * , 9) with respect to 
9 has an outer product form which under both the null and the sequence of 
local alternatives is given by (Newey, 1985a) 

i= i 

Using (3) and (17) in the last equality we get 

I = I 99 
^ - Ç l T - ' O ' G e ) , (21) 

by the law of iterated expectations, all evaluated under //„. 
We now prove: 

THEOREM 1. Let the random variables ( y , , x£ have pdf conditional on the informa
t i o n set F , ( c - f i e l d ) g i v e n by f ( y , , x t I F, ) = J { y , I F, ; 9 0 , y T ) f ( x , I F, ), where 
FtcF, and the x , are weakly exogenous for 9. // this pdf together with the function 
g* = (/«(*, 9)', d6J obey the regularity, continuity, d o m i n a n c e and mixing condi
t i o n s in a s s u m p t i o n s ( l ) - ( 6 ) o f N e v x y (1985b), then 

T m m ( $ , 9) -4 N[y , Q^] , (22) 

where y = [Çf T ~ ^ ' G y } - M (90)l(90)-^(T Q _ 1G y}] 5 and 

ô ( ï =v' 0 -A/(9 0 n(9 0 r 1 w (e 0 r , 

and V0 is the limit of the covariancc matrix in (5) under H Q . A consistent estimator 
o f Q ^ i s 

where. T = I 2 T - i r ^ G ^ G ^ G ^ G ^ Q - 1 ' 2 and all estimates are u n d e r H 0 . 

PROOF. The result is Lemma 1 in Newey (1985b) with some specialization. In 
our context </e,(60) and mt(<t>, 9) are martingale differences with respect to 
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the cr- field F, and so the matrix V simplifies from Newey's corresponding 
expression to 

V = 
- M ( % ) ' l(9 0) 

Let L be the matrix selecting m(<t>, 0) from g * , £- = (/„, 0) 

C = E 96' 

C = (0,/ ), and Pc = l - C i C C f ^ C . Then using (20) and (21), LP = 
( I n , - M ( % ) l ( % ) - 1 ) , and therefore the covariance matrix of T ^ w ( ^ , Ö ) is 
given by 

= L P C V P C ' L ' = V0- W(0o)l(0o)-1M(9O)'. 

Again using (20) and (21) together with (5), and following the argument 
in Newey (1985a), especially that connected with equation (2.11), yields the 
consistent estimator of in (23). 

Finally, note that 

£i i - '&yy=i ir - ' i * , » 

nilarly 
i=l r=l 

b y using iterated expectations and, similarly 

T T 9o 

i=i i=i 

= £[r-'<D'Gy] , 

9Y 

= E [ T - l G ^ Q T l G y ] 

Since these two matrices form the matrix K in Newey (1985b), the 
noncentrality parameter follows directly. • 

We defer power considerations to the next section. The limiting distribu
tion of T x n m ( % , 9) when the model is correctly specified is established by 
setting 5 = 0 in Theorem 1, a result given in 
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COROLLARY 1.1. Under the assumptions of Theorem 1, when the maintained model 
is c o r r e c t l y specified (8 = 0), 

r > ' 2 m ( & , è ) 4 N [ 0 , e o ] . 

PROOF. Set 8 = 0 in Theorem 1. • 

Cases of particular interest to this paper are when * , = (! ,0) and 
* , = (0, 1), making the basic consistency statistics 

T 

i = i 
and 

m . = > v 
"h¬

I = 1 

Corollary 1.2 specializes Theorem 1 to these situations: 

COROLLARY 1.2. Under the assumptions of Theorem J, 

T x a m ^ -4 N[( jL, - \iQV<3)G^)h, cr2 - p:eV(§)pLe'] (24a) 

and 

where 

T m m h -4 N[(/< - heV(Q)G^)Ò , 2x2 - /íeV(8) VI <24b> 

T 

i ~ 1 

V(è') = l (8 0 ) _ 1 is t h e a s y m p t o t i c covariance. m a t r i x of t h e MLE 6, 

a 2 = c j T - i j j i , ) , 
i=i 
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t = 1 

and 
(= 1 

r=l 

PROOF. For <&, = ( 1 ,0) note that <D, 

For «D, = (1 ,0) note that «D, 
96 

= 3n,/3e, <&, 

: 3/i,/36', * , 

= 3(it /3y', and 

3/i,/3y', and 

Note that when the conditional mean does not depend on a as in (1), 
the variance of T u 2 m simplifies to a 2 - x V(pV, with x being the sample 
mean of x , . Similarly, if h , does not depend on B, the variance of T i / 2 m h 

simplifies to 2 T 2 - Z V ( a ) l \ with 7 being the sample mean of z,. When the 
information matrix is block-diagonal between B and a the variances of the 
statistics a r e C T 2 - X V ( $ ) X ' - iraV($)(Ia' and 2 x 2 - z V ( a ) z ' - w V ( a ) w ' , respective
ly, with \ia the sample mean of 3u, / 3a and w the sample mean of w, . A n 
interesting case is the ARCH model, for then l(60) is diagonal and also 

w - - T ^af,-jx,-j™Q> 
i = i 

(25) 

resulting in the simple variances o 2 - x V ( p ) l ' and 2T 2 - zV(a)z"'. This is easily 
seen to apply as well to the more general CARCH model. 

Of course many other test-statistics might be used e.g. there are some 
T 

advantages to employing the sum of standardized residuals T ' ^ h ^ u , or 

T ~l]T ^72E, which relate to the differences between ML and GLS estimators and [ = 1 
thus have smaller sampling variation under H Q for large T. Al l of these can 
be handled with Theorem 1 by appropriate choices of * „ and the asymptotic 
distributions obtained as in Corollary 1.2. The variances are consistently 
estimated by replacing expectations with sample moments. It is important to 
note, however, that the fact that 0 needs to be estimated means that the 
asymptotic variance of the test-statistics is less than it would be if 6 were 
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known, so that inference needs to allow for this extra source of uncertainty. 
The situation is therefore analogous to that which occurs when testing for 
serial correlation in the presence of lagged dependent variables. 

A joint test can also be constructed with <D, = I r Proceeding as in Corol
lary 1.2, it is easily seen that cov[7 v 2 m , T u 2 m h ] = -jIeV(e)/ie, because V0 is 
diagonal by construction. The statistics are rarely independent, but here 
againg the CARCH model is one exception. This is seen by combining (25) 
with la„(e 0) = 0 and ¡¡„ = 0. 

Although the actual computation of the test-statistic is already clear from 
Theorem 1, it is worthwhile producing a simplified calculation. This can be 
done by means of an uncentered coefficient of determination, say R 2 , of an 
auxiliary regression as in Engle (1982b, 1984), Newey (1985a), and Davidson 
and MacKinnon (1984), and will be specially attractive when using multi
dimensional tests. For this purpose we produce 

THEOREM 2. Under the. a s s u m p t i o n s of Theorem 1 

s = Tm(& , eYC^1 m(& , 3) -4 %2[n ; X2,], (26) 

with 

and 

= 4/n1/2<U(«D'n1/24<i21/2<I))-1<D'i2'/2»p. 
M o r e o v e r , if (GQ , has f u l l c o l u m n r a n k then s - s* ™ 0 where s* = 2 T R 2 , and 
R 2 is the. uncentered coefficient of d e t e r m i n a t i o n of the regression ofv on G e and 
t l & in the. metric of t\. 

PROOF. From Theorem 1 we have that 

s = T m ( & , Q)'Qm(& , S) 4 %2{n ; V-TVl-

But using (3) and (23) we get s = v ' W & f r v f y & W & r ^ & ' v 4 2TR2 = s* by an 
argument identical to Engle (1982b), noting T - ^ f c v ^ O and 
A y - ' u ' ^ - ' u 1. The noncentrality parameter follows using (20) and (21) in 
the expression for y , so 

v = S i r - ' [ V G y - * ' G E ( G 9 ' n- 'G^- 'Gg' Q - ' G Y ] } 8= T - l v n l / 3 x v s r 1 / 2 G j 8, 

and the result follows using(23). 
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The immediate result under the null hypothesis is: 

COROLLARY 2.1. Under the a s s u m p t i o n s of Theorem 2 and the model being c o r r e c t l y 
specified (8 = 0), s -4 \\ ands-s*^ 0. 

PROOF. Setting 8 = 0 in Theorem 2 results in = 0. • 

Note that our auxiliary regression differs from Newey's which has single 
length, a dependent variable of unity and is devised for more general environ
ments. The same can be said about the double-length auxiliary regression 
procedure put forward by Davidson and MacKinnon (1984), which differs 
from ours but is asymptotically equivalent for our specialization. The basic 
difference with Engle's (1982b) criteria is that we need to incorporate a 
double-length auxiliary regression to allow for a possible non-diagonal infor
mation matrix between B and a, a case explicitly excluded from his Theorem 
1. In fact, we can apply Theorem 2 directly to the LM test for additional 
variables being properly excluded in either or both conditional moments of 
y r The LM test is based on the subvector of the score given in (15), and denoting 
G A = dg(Q , 6̂ ) / deA we have 

COROLLARY 2.2. Under the assumptions of Theorem 2 the LM test for H 0 : Q A = 0 
i n the model y, I F, - N[u,(9 , 6„) , h t ( Q , 9̂ )] is g i v e n by 

S l m = T m ( t r > G A , Q-IG m i f i r ' ^ , 4 X2[n ; % - , G ] (27) 

and an a s y m p t o t i c a l l y equivalent statistic is s*m = 2TRg from the regression ofx> 
o n G ^ a m i GA in the metric o f t \ with a l l estimates under H 0 and where n is t h e 
d i m e n s i o n of Q A . 

PROOF. The subvector of the score for QA modified from (15) to consider the 
more general specification of the conditional mean is 

T - i ^ a ; \ = T - i G ; a r * y > 
t = i 0 O / \ 

under H Q , and with all functions evaluated under this hypothesis. Therefore, 
set 0= £}-'GA in Theorem 2. • 

Mote that Theorem 2 and its corollaries are general enough to accom
modate wide classes of heteroskedastic and. risk models, and allow for 
separate or joint testing of either conditional moment. When l a r i (9 0 ) = 0, as in 
the CARCH case, tests for the conditional variance can be obtained from a 
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single length regression with e, as the dependent variable. This is the 
univariate specialization of the tests provided in Kraft and Engle (1982) for 
the multivariate case. The single-length test for the conditional mean is an 
adequate one, which follows from Theorem 1 of Engle (1982b). However, this 
is not the LM test in this context for it is not using the information about 8 in . 
the conditional variance and therefore no optimality claims can be made. The 
LM test for the conditional mean must be computed from the double length 
regression to incorporate all the relevant information about B in the likelihood 
function and thus have the usual optimal properties of the LM, Wald and LR 
procedures. And in the general case of a non-diagonal information matrix, 
the double-length regression must be performed to obtain the proper LM 
statistic even if the test is designed for a single conditional moment. 

The LM test is designed to achieve high power in a given direction, 
namely that of the additional variables. But it can also be used as a very 
general test for misspecification by proper definition of the additional varia
bles to approximate a wide range of departures from the null hypothesis. This 
is the idea used in the RESET test (Ramsey, 1969), and it coul be used here as 
well by adding powers of y, to the conditional mean and /or powers of ft, to 
the conditional variance. 

The consistency tests of Corollary 1.2 may be constructed as variable 
addition tests and the same applies to some of the estimator-difference tests 
in (6M14) and this establishes a relation between variable addition and 
variable transformation tests as in Breusch and Godfrey (1986). Note, how
ever, that the tests in which the sums of residuals are weighted by the inverse 
conditional variances will, in general, result in (G„, iM>) having less than full 
column rank and thus cannot be constructed by variable addition. Neverthe
less, the tests for these choices of <D are well defined in general and will have 
power as long as the ML and GLS estimators differ. 

4. Some Power Considerations 

In order to analyze the local power of the tests, it is convenient to decompose 
the vector in (22) for the quadratic form producing the noncentrality 
parameter into y = \|/ + y h , where w summarizes the inconsistency arising 
from a misspecified conditional mean, and y h summarizes the inconsistency 
arising from a misspecified conditional variance. Pardoning * , = (<!>!,, <D2() 
we have after simple algebraic manipulation 

T 
- I de dy 7} 8, (28a) 
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and 
dh 

>=1V 0 

3-7) 8, (28b) 

and we also decompose M(%) = M (80) + M h ( % ) , where 

r= 1 

andM/ l(6 0) = U 7 - 1 I < l > 2 , ^ ) . 
(= l 

Therefore, since is positive definite, the tests will have power against 
misspecification in u., whenever \|/ * 0, and against misspecification in h, when
ever \|/A * 0. It is of particular interest to examine the power of tests designed 
for one conditional moment when misspecification appears only in the other. 

Let us consider first a mean test with a correctly specified conditional 
mean. Then <t>2, = 0 and so M(%) = M ( % ) , and also d\i, 13y= 0. From (28) we 
get v =0and therefore 

Note that this is possible, in general, only in models without risk terms 
because if these are present misspecification in h, will contaminate u, thus 
making y * 0 and causing the test to have more power. But still if there are 
no risk terms, only in special cases will V / i vanish and so the inconsistency in 
ß induced by conditional variance error analyzed in our previous paper will 
be acting through \fh. Now if there are no risk terms we also have 
du, / da = 0 and so we may partition Aye„) = (^,(9,,), 0), resulting in 

1 A A A ¿ 1 dh, dh 
Vh=~5*ye0)(V(ß), cov(ß,ä))^{ 7 - ' j > 7 2 a ^ ) * , 

which reduces to 
1 A d h , d h . 

v h = - t y ^ B o w m { r - » X K 2 äß 1 ) § 

when the information matrix is diagonal. This of course applies to the simple 
heteroskedasticity(A, = h , ( a ) ) and GARCH models. Forthe former, itis evident 
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that \\ih = 0. For the latter, whether y h is or not zero will depend on the nature 
of the true conditional variance, represented here by the departure d h , l d y . It 
is clear that in the cases where we established consistency of $ in our 
previous paper, the expected value in y A wil l vanish and the test wil l have 
no power. 

The other case is a variance test with a correctly specified conditional 
variance. Then <&„ = 0 and / ch/= 0, so M(90) = M h ( % ) and y h = 0, resulting 

in y = y = -W(90)V(S)| { T ^ X T 1 ^ 1 S - T h e expectation will be zero 
only in very special cases. For example, when the mis-specification is in the 
form of autocorrelated errors and neither conditional moment depends on 
lagged y ' s . Hence the variance test is capable of detecting misspecification 
in the conditional mean although whether it does or not depends upon 
the context. 

The above cases place properly into perspective our terming the tests 
as "consistency" tests, for any departure not affecting the consistency of 
the subset of parameters on which the test focuses will be part of the 
implicit null hypothesis. However, performing groups of consistency tests 
singly and jointly will provide a valuable tool for assessing the model. 
Because of Theorem 2 performing a wide range of tests has a small 
computational cost. 

To assess the power of general consistency tests against specific depar
tures the optimality properties of LM tests provide a benchmark. For the test 
of H 0 : Q A = 0 against H [ : Q A ^ 0, Corollary 2.2 gives the relevant test-statistic 
as (27) with NCP 

u = 5>£ ( r - i G / a - 1 / 2 r n - i r C H / 2 G V JS, (29) 
A ' A ' 

where 

Of course, the optimality properties of LM tests apply generally only when 
the departure for which the test has been designed coincides with the actual 
departure from so that G y = GA, and then (29) results in the optimal NCP 

tfM = S% { T - { G ^ Q T m V Q r m G y }8. 
(30) 

It is interesting to note that this LM test is the optimal test in the class 
presented in (3) for departures of the form y T = y 0 + T~mb. This we prove by 
specializing Theorem 3.1 of Newey (1985a) to our situation: 
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THEOREM 3. Under the assumptions ofTlieorem l , t h e L M test for 8 = 0 is the optimal 
consistency test in the sense that its NCP, given in (30), is no smaller than that of 
any other test of the form given in (3). 

PROOF. From Theorem 3.1 of Newey (1985a) applied to our case with u, being 
a martingale difference with respect to F,, the optimal test with basic statistic 
w(<6 ,0) has <D, = E \d \>'t IF ,]£ |\),\>; I F , ] - 1 , where the expectations are taken 
under H 0 . But then £|\),u,' I F,] = i l , , and from (19) E I F;] = d g , ! dy, 
which produces the optimal test statistic based on T ~ l G ' iTH), the subvector 
of the score for the test of 8 = 0. • 

Therefore, to evaluate the power of a general consistency test in a specific 
direction all that needs to be done is to assess how well the relevant * projects 
onto the space spanned by O r 1 G . The smaller the distance of <U from this space, 
the greater the power in the specific direction under analysis. The situation 
resembles that of choice of instruments to achieve efficiency in estimation. 

To illustrate the argument let us consider the linear ARCH(l) model given by 

where z, = (1 , u2_,) and a = (a 0 , a,)'. Suppose the true conditional variance 
h* departs locally in the direction of h** = a,, + a,y 2 _,. Us ing 
v,_! = Jt (_1B + w,_, and w t = - 2 a l u l _ x x t _ ,B we may write 

and we consider separately the two departure directions by making 

h* = h , - T - 1 / 28,w,B + T -1/282(.*, _, B)2 = h , - T - y \ , h , 

where 8 = (8, , 82)' and z „ = (-w,B ,(*,_, B)2)'. The alternative h** is interesting 
empirically in view of the results obtained by Weiss (1984). It is also interest-
ingtheoreticallybecausethetwodeparturedirections in (32)are, respectively, 
a conditionally odd and a conditionally even function of ,. 

Consider the simple tests based on 

y , \ F t ~ N[x,B,h t = cx0 + a , « 2 _ l = z,a], 

/,** = /,f-VV(P + a1(A:,_1p)2 

(32) 

T T 
m h = 

t = 1 I = 1 

From Corollary 1.2 and (25) the variances are a 2 = za - x V ( $ ) x ' and 
<s\ = 2x2 - 7 V(cx)7', respectively, where x 2 = a'ĉ l T ^ Z ' Z fa. Since the mean is 
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correctly specified the term ^ in (28) is zero. To compute the noncentrality 
parameter we need 

T - ' G e ' Q - ' G ^ r - ' 
i=l r= 1 

t = i /= i 

and because w, is conditionally odd in «,_, while h f z , and /i72(x(_.,P)2 are 
conditionally even in u ( _ 1 , it follows from Lemma 3 of Pagan and Sabau 
(1991) that the off-diagonal elements have zero expectation. Let e\ be the 
estimator of 6 obtained using (nonlinear) GLS in the variance equation 
« 2 = /i,(G)+e,,e,= e( + { u 2 - u 2 ) . Sabau (1987a) has shown that for ARCH 
models this is a consistent estimator of 9 0 if the model is correctly specified. 
Partition e\ = $ v ' , a v ' ) ' and let $ m be the feasible GLS estimator for B obtained 
from the mean equation yt = xfi + Sabau has also shown that 

v ( $ v ) = 11 i r - ' X ^ w , )-• v($j = % { T - ^ x ; x , }-> 
t — 1 t - 1 

are the asymptotic covariance matricesof these estimators and further that the 
MLE $ is asymptotically a matrix weighted average of them. Therefore the 
covariance matrix of $ obeys 

V Í B r ' ^ B J - ' + VíB,)-'. 

T 

(33) 

Thus letting rf = \ [ h ' ^ S h f z ' A x . ,B) 2 1 we have that the G^factor 
in (24) is given by 2 <=l 

G f t y=diag { V ( B v r 1 P . ¿ ) / 

while jIY = 0 because of the correctly specified mean and /, 8 = S , ^ , where 

c ^ u i r - ' X ^ - i P ) 2 } , 
<=i 

in view of (25). Finally, using the fact that the information matrix is diagonal 
between B and a (Engle, 1982a), we get 
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s = T T £ -4 X 2 [ l ; X2 = 8% \x V(pV(p\r'P)2 I a 2 ] , (34a) 

and 

where a 2 and a 2 are obtained replacing parameter estimates in the cor
responding expressions for a 2 and o 2 . 

The power for the mean test depends upon 8j, which summarizes 
misspecification in the odd direction and the factor V ( $ ) V ( $ v r l i s j u s t t h e 

(generalized) proportional contribution to the efficiency of the MLE for B 
obtained from the information in the conditional variance. Therefore, the 
power of s will increase when the variance is very informative about B 
relative to the mean. This is the natural thing to expect because only if the 
signal from the variance is very clear shall we get a good deal of information 
from it. And of course in the case of a misspecified conditional variance the 
inconsistency will grow larger. Thus power will be good in the cases when there 
may be a substancial gain in efficiency over estimating B by OLS, which was one 
of the arguments put forward by Engle (1982a) in favour of ML estimation. 

The power of the variance test, on the other hand, comes completely from 
the even term, as reflected in 82. Clearly, power will grow as the presence 
of the lagged squared mean is clearer in the true conditional variance. 

The LM test against the alternative h** can be obtained as 7Y?2, from the 
regression of £, on ( z , , z j in the metric of 2(z,a)2. The test may be computed 
from a single length regression because of the diagonality of the information 
matrix and the absence of information about a in the conditional mean (Engle, 
1983, Kraft and Engle 1982). The same argument would also apply to the 
construction of sh from an auxiliary regression. Note however that LM and 
consistency tests on B will require the double length regression in order to use 
the information in the conditional variance. Proceeding as above and using (27), 
the noncentrality parameter for the LM test is found to be 

•A .2M=^P^ vr 1[V(^ 1)-^M^r'iP + ^ t c j - ^ A w i , (35) 

T 

where c2 = % ( T~i^JiJ2(xl _ $ ) 2 } and the relation in (33) has been used.The 
( = 1 

first term comes from the odd misspecification direction and the second term 
comes from the even misspecification direction. It is now apparent that the 
power of the M L test that comes from the odd term is increased by a contribu
tion to overall efficiency of both moments. But in contrast to the mean 
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consistency test, when the conditional variance provides most of the infor
mation and V(p\) approaches V($), power becomes null. In fact it is easy to 
see that the * matrix for the simple mean test has a null projection on the 
space spanned by f r ' G when only h , is misspecified i.e. the first row of 

, is zero. Thus the power of the simple mean test may be very far from 

optimal in any specific direction, though it has the attraction of a wide range. 
For the variance test, the projection of * onto the space spanned by O r 1 G is 
that of a vector of ones onto the space spanned by the vector with typical 
element h f ( x , _ ,B) 2. 

5. Re-Interpretation and Application 

Before looking at an application of the above tests, it is useful to reinterpret 
them in the framework of Pagan and Hall (1983). By definition the errors u, 
and e, have £ [«, IF,] = 0 and E [e, \ F , ] = 0 , constraints that may be written as 

E [«, I F t ] = Y[ , (36a) 

and 

£[e,IF,] = y 2 , (36b) 

where yx = y 2 = 0. From (36) we could derive the estimating equations 
«, = 7! + «,+ { « , -« , } , (37a) 

and 

e, = y2 + El+[£,-£,}. (37b) 

Regressing u, and e, against a constant yields 

% = T - & , , y2 = T ~ & , 
(=i 1=1 

which correspond to the m and m h statistics analyzed in Corollary 1.2. The 
variances of the Y depend upon two factors: the errors u, and e, and the 
difference between these and their estimated values i.e. the terms given in 
curly brackets. As shown in Corollary 1.2, the OLS standard errors accom
panying y. overstate the true standard errors. This means that any /-statistic 
for y. = 0 from the regressions described above will be biased in favour of the 
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null hypothesis. Still, such regressions can provide quick checks of the adequacy 
of the variance and mean specifications since, if H 0 : y. = 0 is rejected, this 
conclusion would not be reversed if the correct standard errors were employed. 

The argument above extends to the general class of consistency tests 
embedded in (3). Here the restriction E [u, I F,] = 0, may be expressed as 

E[»,\F,]=<t>;y (38) 

where y= 0. From (38) we could derive the estimating equations 

U , = % Y + U , + { v,-\>, } + {<!>,-&, ]'Y, 

so the regression of u, and e, would be against and & 2 , respectively 
(<D; = («!>,', , d>{,) is partitioned conformably with u,). To ensure that <D( is a 
function only of information available after M L E it wil l need to be made 
a function of either It, or perhaps past values of u, and e,. Selection of 

T T 
* . - . = h , 1 produces tests based upon > '«, and > (h, 'uf - 1), statistics that 

appear as outputs in many A R C H programs. Setting 4>2, = h , would effective
ly produce a test based upon whether the coefficient of in the regression of 

u, against ft, was equal to unity; the value the coefficient would be if the 
model was correctly specified. The L M test normally involves constructing 
* , from data outside of the model (as well as imposing the restriction that 
y, = y2 = 0), and it has the potential to be the best diagnostic if the chosen <!>, 
correlates well with the specification error. Conversely, it may be very poor 
if this is not true. 

Fundamentally, what the re-interpretation offered above is meant to do 
is to focus attention upon the innovations u, and e(. An analysis of these 
quatities should be the primary mode of detecting specification errors in 
heteroskedastic models. The L M tests correlates them with other series, just 
as the various consistency tests do, but it is not always the case that this is the 
best procedure. Sometimes greater insight may be available from graphical 
methods or even the recursive estimates of the associated y. 

Engle, Lilien and Robins (1987) ( E L R henceforth) investigated the in
fluence of risk premia upon the excess holding yield for 60-day Treasury bills. 
In terms of (16) y is the excess holding yield and |i (8) = .«-p, with x containing 
an intercept, the yield differential between 30 and 60-day bills, and risk 
premium log/;,. Tho variable h , is modelled as the A R C H process 

4 

« 0 + « l X 
7 = 1 

10 
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MLE was applied to this model and a number of LM tests were performed with 
prescribed <D, to assess the adequacy of their preferred equation (eq. (22), p. 402). 

A range of consistency tests was computed for ELR's preferred equation. 
Using the variances estimated in Corollary 1.2, the ratios of m and m h to their 
asymptotic standard errors were respectively 0.42 and -1.28, which does not 
suggest that ELR's chosen model is incorrect. However, inspection of the 
residuals «, revealed that they were highly non-normal, making a robust 
estimator of v a t ( m h ) desirable. Because the term involving the covariance 
matrix of 9 had already been computed using robust estimators of its com
ponents, the only modification needed was the replacement of l \ by «7 - u] 
in the variance formula. When this is done the /-statistic for m h becomes 2.15, 
providing some marginal evidence that ELR's selected equation is deficient. 

A second set of consistency tests was then performed. These involved 
testing if the coefficient of ft, in the regression of u, and £, against fi, were 
zero i.e. y, and y 2 in a modified version of (36) were estimated and compared 
to zero. The regression /-statistics, which are biased in favor of the null 
hypothesis that y = 0, were -2.82 and -8.64 respectively, which constitutes very 
strong evidence against the specification adopted by ELR. Hence, it appears that 
their decision to model the risk premium as an ARCH process is in error. 

What is particularly interesting about this situation is that the consistency 
tests have disclosed a problem in the specification of ELR's model that was 
not apparent from the broad range of LM tests that ELR employed in their 
paper. In fact, the estimated Coefficient of 8, in the regression of e, against \ 
was -0.67 instead of zero i.e. the regression of u] against %t would yield a 
coefficient of 0.32 rather than the theoretical value of unity it sould have if the 
ARCH specification was correct. Exactly what one might do to improve 
the specification of the risk premium for the excess holding yield is an open 
question, but this example should have served to highlight the fact that the 
consistency tests advocated in this paper can provide crucial information about 
the adequacy of any modelling exercise involving heteroskedastic error terms. 

6. Concluding Remarks 

In this paper we have proposed a class of consistency tests for heteroskedastic 
and risk models. The tests are easy to compute, have a clear intuitive explana
tion in terms of residual analysis, and may be constructed without using any 
information external to the model. Thus performing a set of alternative 
consistency tests may produce valuable information for model specification. 
Local power has been analyzed and we have provided an example in which 
a wide range of LM tests for specific departures failed to detect model 
inadequacy, whereas the simplest vesions of the consistency tests point to 
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some source of specification error. Furthermore, by suitable definition of the 
consistency tests, they can also be used to test for specific departures, as the 
LM test for variable additions has been shown to belong to the class. We have 
also related the consistency tests to other testing procedures in the literature 
and thus have provided a simpleand general framework formodel diagnostic 
in heteroskedastic and risk models. 
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