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Resumen: Este trabajo muestra porqué la teoria no-lineal,
incluyendo la del caos, es importante en economia
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no-lineales de rendimientos en equilibrio.

Abstract: This paper: (1) Gives a general argument why
research on nonlinear science in general and
chaos in particular is important in economics
and finance. (2) Puts forth two definitions of
stochastic nonlinearity (IID-Linearity and MDS-
Linearity) for nonlinear time series analysis and
argues for their usefulness as organizing con-
cepts not only for discussion of nonlinearity
testing but also for building a new class of struc-
tural asset pricing models. (3) Shows how to use
ideas frominteracting particle systems theory to
build structural asset pricing models that turn
ID-Linear or MDS-Linear earnings processes into
non MDS-Linear equilibrium returns processes.
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1. Introduction

In the past few years a large literature on chaos and nonlinear science has
appeared in economics. While the economics literature is large it is dwarfed
by the parallel literature on chaos and nonlinear science in the other sciences.
Here we will use the term “nonlinear science” to refer to the broader study
of nonlinear dynamical systems, not just chaotic ones. More will be said about
the domain of “nonlinear science” when we discussjournals and other outlets
in the area.

A loose definition is this: “Nonlinear science” studies stochastic and
deterministic dynamical systems that lead to “complex” dynamics. A deter-
ministic dynamical system generates “complex dynamics” when “most”
trajectories of the dynamical system do not converge to rest points or limit
cycles. Here, in the stochastic case, “the dynamical system” refers to the
underlying deterministic dynamical system, i.e. the system one obtains when
the underlying stochastic forcing is shut off.

The main tasks of the current paper are three: i) Give a general argument
why research on nonlinear science in general and chaos in particular is
important in economics and finance. #) Put forth two definitions of stochastic
nonlinearity (IID-Linearity and MDS-Linearity) for nonlinear time series
analysis and argue for their usefulness as organizing concepts not only for
discussion of nonlinearity testing in time series econometrics but also
for building a new class of structural asset pricing models. iti) Show how to
use ideas from interacting particle systems theory to build structural asset
pricing models that turn IID-Linear or MDS-Linear earnings processes into
non MDS-Linear equilibrium returns processes.

Although we give a sneak preview here the reader may wish to glance
ahead at Section three for the concepts of IID-Linearity and MDS-Linearity. We
call stochastic process {¥,} ID-Linear (MDS-Linear) if

Yr_PL:ZBjNi—j’ ZB/‘Z<°°'

where the innovations, also called shocks, N, are Independent and Identically
Distributed, abreviated IID, (form a Martingale Difference Sequence, ab-
breviated MDS). As we shall see in Section three, MDS-Linearity corresponds to
the case where the conditional expectation of Y, ,, given{Y,,Y,_;,...} isa
linear function of {Y: R AR .} The concept of IID-Linear is more stringent than
MDS-Linear. Noisy chaosis astriking example of a process thatis notMDS-Linear.

This paper is organized as follows. Section one contains a brief introduc-
tion. Section two uses this paper as a “bully pulpit” to make a plea for more
research on nonlinear science in general and chaos in particular in economics
and finance. During this plea we give a very brief sketch of the literature.
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There is a sizable literature in economics on statistical testing for the presence
of chaos and other nonlinearity in time series data. Since that has been covered
elsewhere by articles in Benhabib (1992), as well as by Brock and Dechert
(1991), Brock, Hsieh and LeBaron (1991), Sayers’s article in Krasner (1990),
and Scheinkman (1990), we shall say little about it here, except to say that
many applications of the techniques found strong evidence against linear
models driven by IID shocks and weaker evidence against a subclass of MDS-
Linear models driven by certain parameterized forms of heteroscedastic shocks.

The techniques of Section three are purely statistical techniques for
testing whether a time series sample comes from a linear process or whether
a time series comes from a chaotic process. While statistical techniques are
useful they are no substitute for a structural model in giving insights into the
economic forces that may generate nonlinearity or chaos.

Section four develops structural models which can generate “en-
dogenous” discontinuous changes in equilibrium asset prices. In particular
we study a class of asset pricing models that generate returns per share
processes that are not linear processes. The intent of these examples is to show
how the theory of Section three can be used to build a parsimoniously
parameterized econometrically and analytically tractable class of asset
pricing models which allow returns data to speak to the presence of economic
forces causing abrupt changes in volatility and returns. The models are also
structured to have the potentiality of generating equilibrium returns that
display GARCH effects (cf. Bollerslev ef 4l., 1992) as well as “excess volatility”
relative to measured fundamentals.

2. Theoretical Overview

We shall deal with the theoretical part of the literature first. The journals (i)
International Journal of Bifurcation and Chaos (IIBC), (i) Journal of Nonlinear
Science, (ifi) Physica D, (iv) Chaos, and (v) Nonlinearity give a glimpse of impact
that research on chaos in particular and nonlinear science in general has had
in sciences other than economics. Indeed the term “nonlinear science” could
be well defined to be the subject matter treated in the above journals. A good
place for the reader to view this type of work in economics is the volume
edited by Benhabib (1992).

An informal definition of chaos is this. A deterministic dynamical system
is chaotic if it displays sensitive dependence upon initial conditions in the sense
that small differences in initial conditions are magnified by iteration of the
dynamical system. A stochastic dynamical system is noisy chaos if it is chaotic
when the conditional variance of the stochastic driver (the ultimate source of
the uncertainty) is set identically equal to zero.
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The Benhabib book gives a guide to the literature on formal definitions
of chaos aswell asa multitude of theoretic economic models thatshow chaotic
equilibria are theoretically possible and are non pathological. Indeed, in
economies with many sectors sufficient conditions needed to obtain chaoticequili-
bria are not very strong when evaluated by the standards of general
equilibrium theory.

Grandmont argues ina recent paper (1992) that: (i) The economic time
series that display the most volatility, e.g., investment, inventories,
durable goods, financial and stock markets, are those for which it
appears that expectations play an important role in generating them,
(1) markets where expectations play an important role are most likely to be
experience learning-induced local dynamic instability. (i7i) plausible capital
market imperfections, adjustment lags and limited substitutability can
generate compex endogenous expectations-driven business cycles. He argues
that it is important to incorporate nonlinearities to study such fluctuations.

The recent book by Hommes (1991) shows how easy it is to produce chaos
in Hicksian type models with lags in investment and consumption. Majum-
dar and Mitra (1992) locate sufficient conditions for robust ergodic chaos to
appear in growth models. The studies cited above raise the key issue of the
plausibility of chaos as a generating mechanism of fluctuations in the real
economy.

Before we go further, I wish to discuss some issues, especially three
common misunderstandings, that have been repeatedly raised to me while
lecturing on the area of nonlinear science in general and chaos in particular.

I don’tbelieve thereis any disagreement amongst economists on whether
exogenous shocks play an important role in astute modeling of economic
fluctuations. The issue of contention concerns the relative value of modeling
endogenous fluctuations directly to modelling a system driven by exogenous
fluctuations, i.e., exogenous shocks. The issue whether chaos is an important
source of endogenous fluctations is especially contentious for the case of
aggregative macroeconomics (cf. Boldrin and Woodford’s discussion of
Sims’s comment on Grandmont in Benhabib, 1992).

“Calibrationists” have criticised some theoretic models which produce
chaotic equilibria for requiring parameter values that conflict with known
measurements. Empirical work on testing for the presence of statistically
detectable chaos infinancial and macroeconomic time series data has not been
very supportive of the hypothesis (¢f. Ramsey, Sayers, and Rothman, 1988).
This controversy has lead to some misunderstandings on the importance of
research on chaotic and other nonlinear phenomena in economics.

The first misunderstanding is this. Just because evidence for chaos in time
series data is weak does not mean that chaos is not a useful lens through which
to view economic activity. The joint problem of data quality and weakness of
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statistical tests make the power of such tests to detect chaos in economic data
particularly weak.

Indeed a recent paper by Barnett, Gallant, Hinich, and Jensen (1992)
applied three tests for nonlinearity and chaos to monetary data and found
inconsistent results across the three tests. They state: “Given the weak nature
of that hypothesis and the implausible nature of the alternative —that the
explanation of fluctuations lies in supernatural shocks to a linear universe-
we find the degree of controversy regarding the existence of nonlinearity or
chaos in economic data to be surprising.” This statement seems to me to be
right on target. Even if the reader does not agree with Barnett et al. it seems
more productive to adopt a scientific research program that directs one to
search for a mechanism that generates the observed movements in time series
data which minimizes the role of “exogenous shocks.”

The second misunderstanding is to conclude that weak evidence for
chaos implies weak evidence for nonlinearity in general. Chaos is a very
special species of nonlinearity. Methods inspired by the attempt to detect
chaos have turned out to be useful in detecting other types of nonlinearity.
There is another reason to be nervous about the use of linear methods in
macroeconomics.

The reader should be reminded that the currently available sufficient
conditions on stochastic multisector models for convergence to a unique
stochastic steady state are severe (¢f. Marimon, 1989). Much of modern macro
economics, including real business cycle theory, is built upon the foundations
of models that have a unique globally asymptotically stable stochastic steady
state. The cases where linear approximation methods (after appropriate
transformations) work well are, for the most part, the cases where attractors
are simple points or cycles (when the driving noise is shut off). So theory is
no refuge for the linearist.

The third, and probably the most important misunderstanding is to
conclude that nonlinearity is unimportant in macroeconomics and finance
because out-of-sample prediction of nonlinear models does not appear to be
better than linear models such as random walk models in finance. Prominant
examples of studies that find no out-of-sample forecast improvement for non-
linear models are Diebold and Nason (1990), Meese and Rose (1991). Perhaps,
because of these negative results on forecasting, some are lead to question the
value of research on nonlinear econometric models in the times series area.

However, LeBaron (1992a, b) has found reliable out-of-sample nonlinear
forecast improvements in stock returns by cleverly conditioning on local
information such as local volatility. He shows that measures of near future
predictability increase when measures of near past local volatility fall.
Antoniewicz (1992) obtains forecast improvements on returns for individual
stocks by conditioning on local volume by use of certain trading strategies.
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The main point is this. Earlier studies examined unconditional measures of
out-of-sample forecast improvment. Estimates of these measures are an
average over the sample over periods where the forecast may be doing well
and where it may be doing poorly. LeBaron shows that this averaging can
make it difficult to discover conditioning information which could help
identify periods when out-of-sample forecast improvement is possible.

Since Brock (1991b) gave an heuristic argument that tests in the family
studied by Brock, Dechert, Scheinkman, LeBaron (1990) and de Lima
(1992a,b) are good at exploring the whole space for local pockets of predict-
ability therefore a rejection of IID-Linearity by one of these tests suggests that
effort should be made to detect potential pockets of predictability. LeBaron's
work can be viewed as a successful location of such pockets of predictability.
The trading rule specification tests of Brock, Lakonishok, and LeBaron (1992)
are also designed to locate zones where prediction might be possible.

Since LeBaron is working in the area of finance where the Efficient
Markets Hypothesis gives a strong argument that any predictability is going
to have to be subtle to prevent traders from exploiting it, therefore success at
finding prediction possibilities in this area suggests that search in other areas
of economics might be even more fruitful. Having dealt with some concerns
about techniques inspired by nonlinear science in economics and finance let
me turn to an overview of interest in nonlinear science in disciplines other
than economics and finance.

My reading of natural science literature suggests, after initial debate on
the claims of having found actual evidence for chaos in Nature, that natural
science accepts the usefulness of nonlinear science in general. Evidence for
this view follows.

First, a United States National Academy of Sciences report states, “As a
consequence of its fundamental intellectual appeal and potential technologi-
cal applications, nonlinear science is currently experiencing a phase of very
rapid growth....In any effort to guide this research, however, it is imperative
that nonlinear science be recognized for what it is: An inherently interdiscipli-
nary effort...” (NAS, 1987, p. 14). The report worries about the difficulty of
supporting research in this area within the confines of the balkanized U.S.
university department system whose reward structure tends to discourage
bold interdisciplinary research. They also worry about the large amounts of
support of the area in other countries relative to the support in the United
States. They conclude that nonlinear science has “...a remarkable breadth of
application and the potential to influence both our basic understanding of the
world and our daily life”.

A second piece of evidence is a dramatic bar graph in Casti (1992, Vol. I,
p. viil) where he plots the number of articles on chaos and fractals by year
from 1974-1990. The bar graph shows an explosion of interest starting in 1983
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which is rapidly growing to a level of almost four thousand articles in 1990.
Since nonlinear science covers the general species of complex nonlinearity
and since chaos and fractals are subsets of the area, Cash’s bar graph under-
states the true extent of activity in this area.

Here is my attempt at distillation of a general view which has emerged
from a huge literature in natural science. Natural science work on chaos leads
to the view that dynamical systems which are composed of many locally
and/or globally interacting parts with a variety of lag lengths due to adjust-
ment dynamics or other sources of delayed reaction are quite likely to be
chaotic where “likely” is measured relative to a population of general
dynamical systems.

In practice measurements taken on the outputof such systems are usually
aggregative and corrupted by noise. Therefore even though the underlying
generating mechanism may be chaotic the measurements taken on the system
appear to be stochastic or purely random. In order to see how tough it can be
for statistical tests to detect patterns in some deterministic dynamical systems
take a look at Griffeath’s comment (especially his reference to Wolfram’s work
on cellular automata) in Berliner (1992).

A prototypical example in natural science is fluid flow dynamics (¢cf. Van
Atta’s article in Krasner, 1990). For an economist fluid flow dynamics may,
perhaps, be usefully viewed as a cellular automaton defined on a large
dimensional state space. In certain Taylor-Couette fluid flow experiments
(where the fluid is “weakly” turbulent) velocity measurements of a small
chunk of fluid appear stochastic to many statistical tests but statistical tests
based upon chaos theory detect evidence of low dimensional chaos.

Studies in epidemiology are discussed by Schaffer in Krasner (1990).
Here, much as in economics, the controversy centers around whether, for
example, the time series of measles cases is better described as a low order
autoregression with seasonalities associated with the opening and closing of
schools or is better described by a periodically forced dynamical system with
a delay structure across components, perhaps along the lines of Kuznetsov
et al. (1992), which can take the torus destruction route to chaos. The working
conditions in epidemiology and biology are closer to those in economics
where data quality is not so high and where laboratory experiments are
expensive or impossible.

It appears that chaos is useful as a lens through which to view the world
in epidemiology, biology, and ecology, not because it helps so much in
prediction but because it is suggestive of pathways to complex dynamics.

This type of viewpoint leads to a paradigmatic shift in thinking about
useful methods of study of such fields. Some scientists have been taking the
view thatin many cases linearization methods aresuspect and the oily excuse
for using them is computational cost. Advances in computation have
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removed this constraint. Indeed some natural scientists are becoming rather
sceptical aboutlinearization. See, for example, Chua’s editorial in International
Journal of Bifurcations and Chaos, March, 1991.

In view of the rapid increase in nonlinear science activity in the other
sciences, and, with the dramatic decline of computer costs making nonlinear
science research within the realm of any researcher with a PC, one mightargue
that economics ignores nonlinear science at its peril.

Indeed people of a more practical sort with no incentive to have
allegiance to any particular academic methodology have been recently
using ideas from nonlinear science such as genetic algorithms and neural
nets to design trading strategies for financial assets. Three examples that
have recently hit the popular media are Hawley et al. (1990), London
Economist, August 15, 1992, p. 70, and “The New Rocket Science Hits
Corporate Finance”, Business Week, Nov. 2, 1992. Reading between the
lines one can see that at least one of the strategies discussed by the
Economist and Business Week was inspired by Holland’s (1992) “bottom up”
approach to artifical intelligence by creation of an artificial ecology of
strategies encoded by bit strings so that evolutionary Darwinistic
dynamics can be simulated via computer.

In this system the best strategies are those which survive many genera-
tions of simulated evolutionary struggle. The Santa Fe Institute has stimu-
lated research along this line in economics. Prominant examples are
Anderson, Arrow, and Pines (1988), Arthur (1992), and Sargent (1992). Arthur
(1992) and Sargent (1992) contain elegant statements of this approach to
modeling “bounded rationality” in economics.

More on the Santa Fe theme can be found in a recent Scientific American
article, “The Edge of Chaos: Complexity is a Metaphor at the Santa Fe
Institute”, October, 1992. The Santa Fe Institute studies complex dynamical
systems and uses them as an organizing theme to study a catalogue of
phenomena including the economy. See Anderson, Arrow, and Pines (1988)
for an early statement of the Santa Fe approach. While I believe that there
is a general consensus in economics that research in economics in the
general area of nonlinear science as exemplified by the Santa Fe Institute
is valuable, the usefulness of research on the particular area of chaos may
not have such a consensus.

Nevertheless  argued above that this kind of research hasbeen important.
Other reasons why the research is important are these. First, in models with
many sectors with a variety of adjustment lags it is easy to produce chaotic
equilibria for plausible parameter values. Yet it is easy to produce examples
where the aggregates do not appear chaotic to statistical tests for chaos. So
aggregation may be responsible for the lack of evidence of chaos in macro-
economic data.
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Second, the article by McNevin and Neftci in Benhabib (1992) argued that
a set of aggregate data is less anti-symmetric than the disaggregated data
under plausible economic conditions. Anti-symmetry is evidence consistent
with nonlinearity because symmetric input into a linear map leads to sym-
metric output. They argue that the cyclical behavior of major capital goods
industries is likely to be out of phase at business cycle frequencies and this
would lead to symmetric aggregates even though the components are anti-
symmetric. Their evidence is consistent with this story.

This situation is rather similar to the work of Sugihara and May (1990).
They exhibit evidence consistent with the view thataggregate data on measles
lookslike an AR(2) with seasonalities associated with the opening and closing
of schools is composed of components which behave in a manner more
consistent with chaos (Sugihara, Grenfell, and May, 1990). Indeed when
Sugihara, Grenfell, and May (1990) disaggregated the data they found
evidence that there was a lag structure in propagation of the disease from area
to area which generated dynamical information consistent with chaos.
Note that we are not saying they showed the data was chaotic. We are only
saying that the disaggregated data exhibited behavior consistent with chaos.

Third, research on chaos has sensitized scholars to pathways for emer-
gent structure such as emergent nonlinearity. It is important to recall that
chaos is a very special form of nonlinearity and, hence, the set of nonlinear
data generating processes is much larger than the set of chaotic data generating
processes.

3. Testing for Chaos and General Nonlinearity

A common method, but certaintly not the only one, of testing for “neglected
structure” of any form is to estimate a best fitting model in a given null
hypothesisclass and pass theestimated residuals through a testing procedure
designed to detect “neglected structure”. If the null hypothesis class is the
linear class this gives a procedure to test for nonlinearity.

In order to discuss this subject we need some definitions which we take
from Brock and Potter (1992). For brevity we concentrate on scalar valued
processes and ¢ lags in the law of motion (1.b) below.

DEFINITION 1. We say the observed data process {A(1)} is generated by a noisy
deterministically chaotic explanation, “noisy chaotic” for short, if

A =h(X,, M), (3.1.a)

X,=GX,_|,....X%_,.V), (3.1.b)

t t—g° 't
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where [X, } (when V, =0) is generated by the deterministic dynamics,
x,:G(x,_I,...,x,_q,O), (3.1.0)

which is chaotic, that is to say the largest Lyapunov exponent (defined below)
exists, is constant almost surely with respect to the assumed unique natural
invariant measure of G(.), and is positive.

Here {M,}, {V,} are mutually independent mean zero, finite variance,
Independent and Identically Distributed (IID) processes. Here {M,} represents
measurement error, A(x, m) is a noisy observer function of the state X,, and
{V,} is dynamical noise.

We warn the reader that positive largest Lyapunov exponent of the
underlying deterministic map is not the only definition of chaos which
appears in the literature. However this definition, and all definitions we have
seen, share the following hallmark of chaos: Sensitive Dependence upon
Initial Conditions (SDIC). Turn now to a definition of the largest Lyapunov
exponent.

DEFINITION. Largest Lyapunov Exponent of map F(x). Let F:R* - R". The
largest Lyapunov exponent, A, is defined by

A=limIn[D, F' v}/, (3.2)
T—eo 0
where D _,"",v,In, F'!, denote derivative with respect to initial condition

xgattime gero, matrix product with direction vector v, natural logarithm, map
F applied ¢ times (the #-th iterate of F'), and matrix norm respectively.

The following well known scalar valued example, called the tent map,
Fxy=1-2x-11, (3.3)

isa deterministic chaos with the following properties: F(x) maps [0, 1]toitself,
and for almost all initial conditions, x; € [0, 1], with respect to, Lebesque
measure on [0, 11, the trajectory x(x,) of the dynamics, (I.c) is second order
white noise i.e., has flat spectrum, and, the Autocorrelation Function (ACF) is
zeroatallleadsand lags. Thelargest Lyapunov exponentis A = In(2) > 0. There
are many examples of deterministic chaoses. They share the feature that they are
not predictable in the long term but they are predictable in the short term.

The approach of Barnett, Gallant, Hinich, and Jensen (1992) locates
sufficient conditions on the above setup such that the method of delays can be
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used to “reconstruct” the underlying deterministic dynamical system (3.1c)
so that nonparametric regression can be used to obtain a consistent estimator
of (3.1c) so that a consistent estimator of the largest Lyapunov exponentcan
befound. Once a consistentestimator of the largest Lyapunov exponent is in hand,
they test whether it is positive.

The definition of chaos as positive largest Lyapunov exponent
naturally leads to an heuristic suggestion why chaotic dynamics should
be expected for the dynamics x,, | =f(x), f: R" = R" for n large enough.
The intuitive idea is this: If a system fis “drawn at random” the chances
of getting one with a positive Lyapunov exponent should tend to one
as n— oo,

In order to see why it may be possible to formulate and prove such a
result turn to Ruelle’s (1989, Chapter 9) treatment of Liapunov exponents.
Place enough restrictions on each dynamical system f(.) so that the Oseledec
Multiplicative ergodic theorem can be applied to give existence of the limit
of the 1 /2N-th root of the product of the derivative of the N-iterate of f(.) with
its adjoint. Call this limit A, for initial condition x. The logarithms of the
eigenvalues of this limit matrix are the Liapunov exponents. While the limit
exists for p-almost all initial conditions, the invariant measure p which
appears in the theorem depends upon f(.). Also the measure p may contain
“atoms”, i.e.,, may not be absolutely continuous with respect to Lebesque
measure. Hence there are obstacles on the route to showing that the story we
tell below could serve as a metaphor for the likelihood of drawing a dynami-
cal system whose limit matrix A, exists and which has an eigenvalue with
modulus greater than one, i.e., a positive Liapunov exponent, i.e, the dynamical
system is chaotic.

Consider the following story which will serve as a kind of metaphor. Let
B be a large positive number. Draw n numbers 7»,., i=1,2,...,n at random
from the set [- B, B] according to acumulative probability density distribu-
tion function P(.) for the i-th draw. Let these numbers play the role of the
eigenvalues of A, above. The probability that atleast one A, is greater than one
(i.e. we have a positive largest Lyapunov exponent for the linear dynamics
on R" given by x; 1= 7»1. X, j=1,2,...,n) is one minus the probability
thatall A; areless than orequal to one. Assuming independent draws we see

t=n
immediately that A n= HPr{li <1} is nonincreasing in n, hence converge to
a nonnegative limit L:—als n—»co. If L>0 then taking logs shows us that
log[Pr{A;<1}]1 = 0,i > o;i.e, Pr{);< 1} - 1, i = co. This gives us
PROPOSITION. Let {P})iL | be a family of distribution functions such that
lim inf; _, . ,Pr{\;< 1} < 1. Then as n — o the probability that at least one A;> 1 in
n draws converges to unity.
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We hasten to add that the above argument is only meant to suggest that
it is not absurd to expect that chances are high for obtaining a positive
Lyapunov exponent for a dynamical system on R" “drawn at random”
(however “drawn at random” is given precise meaning). We consider it an
interesting research project to find sufficient conditions on the space of
dynamical systems on R” so that the likelihood of a chaotic system could be made
precise as n tends to infinity. At this stage we are simply trying to show that it is
not implausible to expect that a “lot” of systems are chaotic if n is large enough.
Turn now to a treatment of general nonlinearity that goes beyond chaos in
particular and nonlinearity of deterministic dynamical systems in general.

3.1. Some Notions of Stochastic Linearity and Nonlinearity

For brevity we consider scalar valued strictly stationary stochastic processes.
Consider the following stochastic process

V-u=3BN,_;, YB<ee, (34)

where {N, } is a mean zero, finite variance denoted, (0, o?), strictly stationary
stochastic process. In the discussion here 2 ranges from 0 to <. It can be generalized.

We discuss two commonly used definitions of stochastic linearity: MDS-
Linear and IID-Linear.

DEFINITION (MDS-Linear) (Hall and Heyde, 1980, pp. 182, 183). The stochastic
process {Y,} is MDS-Linear if it can be represented in the form (3.4) above where
the “innovations” {N,} are a Martingale Difference Sequence (MDS) relative to
the sigma algebras F, generated by {Y,, s <1}.

Hence a stochastic process is “MDS-Linear” if it can be represented as a
linear filter applied to MDS innovations. To put it another way, the best Mean
Squared Error (MSE) predictor based upon the past is the same as the best
linear predictor based upon the past.

De Jong (1992) shows how the Bierens consistent conditional moment
test of functional form can can be adapted to create a consistent test of MDS
Linearity. The intuitive idea is to consistently estimate (under the null
hypothesis of MDS-Linearity) a linear model and pass the residuals through
De Jong's adaptation of Bierens’s test. We refer the reader to De Jong for the
details. Turn now to the definition of IID-Linear.

DEFINITION (IID-Linear) (Hall and Heyde, 1980, p. 198). The stochastic process
{Y,) is IID-Lineqr if it can be written in the form (4) where the innovations {N,}

are IID (0, 62).
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The test of Brock, Dechert, Scheinkman, LeBaron (1990) is especially
adaptable to testing the hypothesis of IID-Linearity. This is so because Brock and
Dechert (1991), Brock, Dechert, Scheinkman, and LeBaron (1990), Brock,
Hsieh, and LeBaron (1991) show that the first order asymptotic distribution
on the estimated residuals of best fitting linear models are the same as on the
true residuals for a large class of IID-Linear processes. The last two references
argue this point both by theory and monte carlo work. De Lima (1992a, b)
gives the most general and most complete proof of this invariance property
for a family of related statistical tests.

Note that the Wold representation theorem says any purely (linearly)
nondeterministic stochastic process has a representation of the form (4) for
some {N,} innovation process which is uncorrelated (HH, p. 182). The two
definitions of linearity require much more than mere uncorrelatedness of the
innovations. That is what gives the definitions content. Futhermore requiring
(asin the concept of MDS-Linear) that the best MSE-linear predictor be the best
MSE-predictor seems to be as far as one can go in weakening the IID require-
ment on {N,} without running into the inherent nontestability of the Wold
decomposition.

The above exposition gives an heuristic overview of the two main
definitions of stochastic linearity. However, in financial applications it is
controversial to assume that second order moments exist of outputs and
innovations. The reason is simple. There is strong evidence that the uncondi-
tional variance of asset returns is infinite and, furthermore, conditional
volatility measures are extremely persistent (cf. Loretan and Phillips (1992)
and their references). For this reason the definitions require relaxation of the
moment conditions.

De Lima (1992a, b) provides a general class of tests which can be used to
test the hypothesis of IID-Linear under minimal moment restrictions. Essen-
tially de Lima requires no more moment requirements than those needed to
consistently estimate linear models. Furthermore the first order asymptotic
distribution of his tests on estimated residuals are rigorously shown to be
independent of the estimation procedure for a large class of IID-Linear data
generating processes. Furthermore he shows by theory and monte carlo work
that moment requirements of rival tests matter for correct inference under
conditions typical for financial data. We urge the reader who works with
heavy tailed data generating processes such as those in finance to read de
Lima’s two papers.

We hasten to add that the literature on testing for nonlinearity and
estimation of nonlinear models is vast and that the point of view exposited
here disproportionately represents my own work. The book by Brock, Hsieh,
and LeBaron (1991) expounds the point of view taken here and briefly
attempts to relate it to other parts of the econometric literature. The books by
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Casdagli and Eubank, (1992), Granger and Terasvirta (1992), and Tong (1990)
should be consulted by the reader for a more balanced treatment of nonlinear
time series econometrics.

Turn now to the development of new classes of structural asset pricing
models that generate non MDS-Linear equilibrium processes for returns per
share of risky asset.

Recall that MDS-Linearity is equivalent to: The best MSE predictor given
the past, i.e., the conditional expectation given the past, is the best linear MSE
predictor. Hence any class of models that contain endogenous jumps and
discontinuities in response to changes in the variables used for prediction
cannot be MDS-Linear because linear predictors are continuous functions of
the variables used for prediction.

4. Structural Modeling Using Interacting Particle Systems Theory

In this section we exhibit a class of asset pricing models that show how
MD6-Linear earnings processes can be transformed into equilibrium returns
per share processes that are not MDS-Linear. While we emphasize that more
conventional asset pricing theories such as Lucas (1978) and Brock (1982) can
transform linear earnings processes into nonlinear returns processes through
the market equilibration equations, in these models small changes in the
environment do not lead to large changes in returns or returns volatility.
Evidence in articles such as Haugen et al. (1991) suggests that abrupt changes
in returns and volatility which are difficult to link to measures of fundamen-
tals are quite common. We want our models to be able to address such
evidence. Turn now to a class of models that endogenize discontinuous
responses to changes in the environment and history of evolution of the
system.

We shall use the probability structure of interacting particles systems
(IPS) theory as an input into building our class of asset pricing models. See
Durlauf (1989a, b; 1991a, b) and his references, especially to Follmer, for
uses of IPS theory in economics. Here we shall complement this work by
fusing together ideas from discrete choice theory (e.g. Manski and Mc-
Fadden, 1981), and IPS by using mean field theoretic arguments to obtain
closed form solutions for equilibria in our models in the large economy limit.
In this way we can formulate the theory at a level of accuracy sufficent to
capture the phase transition behavior emphasized by Durlauf, but still
have the convenience of closed form solutions which can be adapted for
statistical inference.

Hence, this part of our paper is methodological in the same sense as Lucas
(1978). The emphasis will be on finding parsimoniously parameterized, yet
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flexible, probability structures. The modelling technique offered here will be
applied to examples in order to show its usefulness.

The organization of Section four of this paper is as follows. First, in
Section 4.1, we state the general probability structure of interacting systems
that we shall use. Second, in Section 4.2 we shall apply this probability
structure to develop asset pricing models where demands are cross-depend-
ent at a point in time over the set of traders. The large economy limit will be
taken and conditions will be located on the strength of the cross dependence
for the cross sectional ergodic theorem to hold. We shall then study the
temporal evolution of the cross sectional dependence. The models areframed
to be econometrically tractible to adaptions of the method of moments.

In Section 4.2 we treat the first example of our type of model. This is a

" formalization of “noise trader” models in economics and finance, where we
find sufficient conditions on the probability structure for the noise traders to
matter in the large economy limit. Since, “noise” trader models are controver-
sial we emphasize at the outset that our type of model may be interpreted as
a model where traders have heterogeneous beliefs or heterogeneous estimation
or learning methods for relevant conditional moments needed to form their
demands for assets. The new ingredient that we add is a parameterization of
the cross-dependence of the heterogeneity that is econometrically tractable
and leads to the uncovering of sufficient conditions for the heterogeneity to
matter in the large economy limit.

In Section 4.3 we develop an asset pricing model where dependence of
each trader’s income on the market portfolio is itself dependent across the set
of traders. This model leads to a simple relationship for the equilibrium price
of the risky asset and relatively simple equilibrium volume dynamics.

Section 4.4 treats a version of Campbell, Grossman, and Wang’s (1991),
hereafter, CGW, model of traders with random risk aversion parameters. In
our version the temporal movement of risk aversion evolves endogenously
in such a way that explosive bursts of volatility are possible in a rational
expectations equilibrium. Our model is a nonlinear model that nests the CGW
model as a special case. We indicate how the parameters of the model may be
estimated using data on price and volume.

None of the above models are rational expectations models with asym-
metrically informed agents in the sense of Gennote and Leland (1990),
Hellwig (1980 and 1982). In Section 4.5 we briefly show how Hellwig’s (1980)
large economy limit theorem can be used to produce a model with an
equilibrium price relationship which can display abrupt changes to small
changes in the environment.

Section 4.6 shows how to build a simple macro finance asset pricing
model that “endogenizes” the exogenous shocks in the Lucas (1978), and
Brock (1982) models. This example was stimulated by Durlauf (1991a, b).
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These models illustrate that interactive systems probability modelling can
produce analytically tractable asset pricing and macroeconomic models. The
models all share the common property that small input noise into the environ-
ment can produce large noisy movements in equilibria. The models suggest
economic pathways through which input noise magnification can occur.

4.1. General Probability Structure

We exposit the simplest version of our probability structure here. The appen-
dix contains a generalization where the interactions are be considered over
disjoint sets A| ,. .., A, where types are homogeneous within each set but
heterogeneous across each set. In the Appendix, the large system limit (as
N =total number — =) is taken by holding the fraction of each type
k=1,2,...,K constant.

To formalize the simplest version which contains the main ideas, let
Q be a set of real numbers, let 2 be its N-fold Cartesian product, ® € Q,
and put

Pr{w} = exp[BG]1Py(w)/Z,

G=U+(1/2)Y, DI o0 +h)o,,
i ()
U) = > u(©), (4.1.1)

where 2 isoveri=1,2,...,N, 2 is over “neighbors of i”, Pr{w} denotes
i )

probability of social state o, u(®,) is own utility to agent i of choice w; € Q,
Z= Zexp[BG(v)]PN(V), 2 isover all v, and B is a parameter whose role will be
explained later. Here P,(v) denotes the product probability on Q, induced by
the common distribution function F on Q. We will concentrate on the case
where Q is finite and F is a sum of ”Dirae deltas” but use 2 and Jinterchan—
geably to suggest the natural extension to a continuous state space.

The best way to think about this structure is to think of (4.1.1) as giving the
joint distribution of social states  of a society of N individuals, each facing a
choice from a set of alternatives, Q. Here /. is a measure of the strength of
interaction between individuals i, j located at sites i , j. We wish to exposit a
discrete choice (Manski and McFadden, 1981) interpretation of (4.1.1) because
this will be important to our development.

Consider the discrete choice model

V(w) = G(o) + ug(w), [e(.)} IIDEV. 4.12)
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Here “IIDEV” denotes Independent and Identically Distributed Extreme
Value. The model (4.1.2) represents a stochastic social utility model where
the errors ¢(.) are IID extreme value (Weibull) over win Q,, . Manski and
McFadden (1981, pp. 198-272) show that the probability that a particular
social state w is social utility maximizing is given by (4.1.1) with B=1/y,
where B is called the “intensity of choice.” Note that B =0 gives the most
random measure across social states, i.e., each social state has probability
1/1Q,1 = 1 /1QIV, where IQI denotes the cardinality of the finite set Q.

Anderson, de Palma, and Thisse (1993), Chapter 2, hereafter “ADT,”
review results in the discrete choice literature that show

E{maxG(w)} = (1/P)In(2)

where in denotes the natural logarithm and max is over w € €2,. This gives
a nice connection between the welfare measure, E{maxG(w)}, of discrete
choice theory and the free energy function of statistical mechanics. They
are the same except for a change in sign. See Kac (1968) for the free energy
function. ADT also show how (1/) is related to measures of diversity in
differentiated product models as well as to the CES parameter in Constant
Elasticity of Substitution differentiated product models. It is helpful to
keep these possible interpretations of (1/) in mind while reading the
sequel and to keep in mind that it does not have to be interpreted as
“inverse temperature” which is the standard interpretation in statistical
mechanics.

We wish to relate individual choices to aggregate social choice. We wish
to compute long run averages and locate conditions for ergodicity failure for
probability systems like (4.1.1) and (4.1.2). The interacting particles systems
theory, hereafter “IPS”, discussed by Durlauf (1989a, b; 19914, b), Ellis (1985)
and their references is the tool we use. Durlauf’s work locates sufficient
conditions for ergodicity failure for models with general {J,}. We specialize
here to a rather coarse level of approximation, called “mean field theory.”
which replaces the joint probability distribution in (4.1.1) with an approximating
product probability.

This level of approximation is accurate enough to (i) uncover sufficient
conditions for phase transitions which predict phase transition behavior in
the more general case, (i) give useful parameterizations for economic modelling
that yield econometrically tractable models, (iii) give the same equations for
limit values of certain bulk quantities such as means as more general struc-
tures. We shall explain below.

Let { ;) denote expected value computed with respect to the probability
structure (4.1.1). Assume “translation” invariance, ZJ(i - j)(nj = ZJ(k -y,

@ *)
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forall i, k. This impliesm={®;)=(,) foralli, k. Consider the component
of social utility in (4.1.1) that is generated by agent i,

Vo, 0_) = u(w,) + [ D Ji~ Dojlo, +ho,+pe(®), (@)} TDEV  (4.13)
@
Weremark thatin later applications, as in Durlauf (1991a, b), we shall interpret
w_; as the previous period choices of agents other than i. Furthermore the utility
function u(.), the parameters J(i - j), &, 11, and the distribution of &(.) can depend
upon the past. For the moment we proceed in an atemporal setting
Mean field theory, hereafter denoted MFT, replaces G- Jw; by
o)

E{Y I - o} =mY Ji-j)=m]
@) U]
in expression (4.1.3) to obtain,

Vi(w,, m)=uww)+Jmw,+ho, + n&g(o,), {e(w,)} IDEV. (4.1.3")

Since m = ( @, ) , mean field theory computes the average { o, ) "with respect
to the probabilities (4.1.3") and imposes the self consistency condition,

() =m. (4.14)

Equation (4.1.4) is a fixed point problem for m.

We shall see below how useful the MFT procedure can be to approximate
quantities of interest. The procedure is much more general and can be carried
out to higher levels of approximations in many different types of models. See
Mezard et al. (1987), Ellis (1985), Kac (1968) and their references. However, the
linkage of MFT and discrete choice theory presented below appears new to
this paper.

Before we go further we wish to exhibit a connection between a Nash
type notion of economic equilibrium in a Manski-McFadden world of inter-
connected discrete choosers and the MFT procedure.

Equation (4.1.3") leads to probabilities,

Plo] = [JPrio), Prioy =exp(Blu) + Um+ Hol} /Z, . (415)

Here Z,= Zexp{B[u(vi) +(m +h)v ]}, where Y is over v, € Q.= Q. Note that
when J=J;=0,alli,j,then the probabilities given by (4.1.1) are identical to those
given by (4.1.5). Also note, in our context, MFT may be viewed as the equilibrium
generated by a group of individual agents i forming common expectations
on the choice {®,) =m of their neighbors, making their stochastic choices
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according to (4.1.3"), and having their expectations confirmed via the self
consistency condition (4.1.4). We shall see examples below where the exact
large system value of m is a solution to (4.1.4). The Kac method, which is
exposited below, will give a theory of solution choice when there are multiple
solutions to (4.1.4).

Consider the special case of (4.1.1) where Jij=J/N. In this case the
interaction strength goes to zero as N — o, but every site has interaction
strength J/ N with every other site, no matter how distant. Hence, we have
weak local interaction, but long range interaction.

For future use, for example, as inputs to formation of demand functions
onr risky assets, we want to find the limiting value of the following statistic:
m=M/N, where M = 20)[. The reader may wish to glance ahead at the next
sections of the paper in order to see the key role that the “order parameter”
m plays in the asset pricing models. We shall show,

(my—m", N— o, (4.1.6)
Where m* solves (4.1.19a) below. Here (. ) denotes expectation with respect
to the probability (4.1.1) for the special case, J;=J/N. Details on how to
define the object (.) will follow in due course. We show now, that the
limiting value in (4.1.6) is given by a direct application of Kac (1968, p. 248).
In order to see how the Kac method works, let’s do an example. A general
treatment is in the Appendix. Put J(i - j)=J in (4.1.1). Let us compute Pr{w},
Z=2Z,, and (w,). We have
Zy=dexp { BLYuw) +U/72) Qv,/ N2 + h(Q V)1 Py(v),  (417)
Z isoverve Qy.Do the following steps. First, use the identity
expla?] = (1/(2m)! /2 [expl— 2 /2 + 21/ 2xalds, 4.18)
and, second use the change of variable y = x(3J/ N)1/2 to obtain
Pr{w] = (N/2nBJ)" " expl— y2N / 2BI1[ JexplBu(e;) +
+(y+Br)o)dyP () / Zy; , 4.1.9)
Zy= (N7 2080 2fexpl— 2N/ BN MLy + BR))dy,  (4.1.10)

MEJexp[z§ + Pu(€))dF, H is the product over i=1,2,...,N.(4.1.11)
EeQ
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Note that we use M to denote “moment generating function” for (4.1.11).
Compute, observing that (a, )= ((x)j) foralli,},
m=lim{ (((1/N) (X w)])}
< 1im{ [o(Bh +y) 1K)y / [K(0)Va)
= ]imjg(ﬁh + Ypldy), 4.1.12)
where, @, (dy) = |K(y)[Vdy / JK(ﬂ)Ndﬁ =8, (), N — o,

K(y)= M(Bh + y)expl- y* / 2B.4], (4.1.13)

gBh+y)= j{QCXp[i(Bh +y) + Bu@dI &)} / M(Bh + y)
=M'(Bh+y)/ MBh+y) (4.1.14)

Apply Laplace’s method (cf. Kac, 1968, p. 248; Ellis, 1985, pp. 38, 50, 51) to see
that, as N — eo, all probability mass is piled onto

y* = Argmax {M(Bh + y)expl—y2/2B1]}, (4.1.15a)
ie, ty(dy) = BY:,:(dy), N — oo, Hence, y* solves
BIM (Bh + y) / M(Bh +y) = y, (4.1.15b)
and m" is given by
m* =M (Bh+y*)/ M(Bh+y"). (4.1.15¢)
Note three things. First, (4.1.15a) demands that y* be chosen to be the solution

of (4.1.15b) which, in the case u(.) =0, has the same sign as 4 when 4 is not
zero. Second, note that BJm" = y*. Third, observe that

B(iim E{maxG(e)} /N) = lim (in(Z,)/ N)

N 5 oo [0} N - oo

=max In {exp[— y2/ (2BJ) IM(y + Bh)}
y

=max In {exp{—m2BJ/2IMBJIm + BR)},  (4.1.15d)
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hence, the Kac (1968) method of solution selection amounts to choosing the
social optimum solution of the “Nash” condition (4.1.19b) below. The point
is this: Minimizing free energy in the thermodynamic limit to find the ground
states corresponds to maximizing expected social welfare in the large
economy limit to find the socially optimal states.

Now Ellis (1985, p.38) shows, for the case u(.) = 0, c(z) = log[M(z)] is convex
in z. Replace the measure dF(x) by exp[Bu(x)1dF(x), and follow Ellis (1985, p.
229) to show c(z) is convex for general u(.), B. Therefore ¢'(z) = M'(z) / M(z)
nondecreases in z. Make the modest additional assumption that ¢’(z) increases
in z. Thus ¢(.) is 1-1 and it follows that

m =c'(BIm + Ph) = M'(BJm + Bh)/ M(BJm + Bh) =0(m).  (4.1.16)

In order to study equations (4.1.15), (4.1.16) first look at the special case,
Q=[-1,+1},u(-1)=u+1)=0,dFa) =(1 /Z)ZSa , where 8, puts mass one
ona=-1,+1,and mass zero elsewhere. We have, recalling the definitions of
hyperbolic cosine, sine, and tangent,

M(z) = cosh(z), M'(z) = sinh(z), ¢’(z) = tanh(z), (4.1.17)

m =tanh(BJm + Bh). (4.1.18)

Equation (4.1.18) is Ellis’s Curie-Weiss mean field equation (Ellis, 1985, pp.
180, 182). Turn now to the discussion of this key equation.

Following Ellis it is easy to graph (4.1.18) and show that for 4 =0, there
is only one solution, m = 0; but, two solutions, m_=-m,_, appear as soon as
BJ becomes greater than one. For 4 not zero, (4.1.15a) requires the one with
the same sign as & be chosen. A “phase transition” or “spontaneous mag-
netisation” is said to appear when BJ becomes greater than one. Turn now to
the general case which includes the case, u(~ 1) v(+ 1).

For this case we have, from (4.1.15), denoting the optimum m by m*,

m* = Argmax { JexplE(Bh + BJm) + Bu(®)ldF(E)exp~ BJm? /21)

= Argmax{Y (m)}. (4.1.19a)
Hence m* solves. m = 0(m) where 6(m) is given by

[eexpleBh + Bam) + Bu@)1AF(E) / [exple(Bh + Bm) + BuEIAFE), (4.1.19b)
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but (4.1.19a) gives the selection rule for the solution of (4.1.19b). We sum-
marize the discussion to this point into

PROPOSITION 4.1. For the special case of (41.1) with J,=J/N,

(s N)Zoqi ) = m"*, N — co, where m* solves (4.1.19a). The solution set to the first
order necessary conditions for a maximimum in (4.1.19a) is the same as the solution
set to the MFT equations (4.1.3°), (4.1.4), (4.1.5). However the limiting behavior of
(4.1.1) gives a selection rule (4.1.19a) whereas the MET equations do not.

We remark that the value of {®;) with respect to the MFT probabilities
is easy to calculate using the product structure of the MFT probabilities. The
calculation is similar to, but simpler than, the one carried out above. Turn now
to the possibility of phase transition for the economics case & =0, u(— 1) not
equal to u(+ 1).

The intuition of the analysis of (4.1.18) suggests B, Jlarge should lead to
abrupt changes in m* if du = u(+ 1) — u(— 1) changes sign. Let us study (4.1.1%9a)
to investigate this possibility. Our approach adapts Pearce (1981, p. 312-313).

Put k= Bh + BJm and rewrite (4.1.19b) thus

O(m) = Ok) = J.ﬁexp[ﬁk +Bu©)dF(E) / Jexp[&k + Bu(©)aF(E)
= {explk+ Bdu] — exp[— k1}/{explk + Bdu]} + exp[- k}}
=tanh[B(Jm+h)}, HK'=h+du/2. (4.1.20)

We shall do a fairly complete analysis for the case,
dF=(1/2)(8_+3,,),

and content ourselves with suggesting possible extensions for general &, dF.
Note that theright-hand side of (4.1.20) shows us thatreplacing by #’reduces
(4.1.20) to an application of (4.1.18).

It is now straightforward to use (4.1.20) to check the following: (i) When
du=0, ®(k) is given by (4.1.18), y=fJ > 1 implies there is a phase transition,
i.e, a positive and a negative root to (4.1.18) with the root having the same
sign as h chosen by (4.1.19a). (ii) For fixed du, ®(K) —> + 1, K - oo; ®(k) > — |,
k — — oo. (iii) For B > 0, for du > 0 (< 0) but close enough to zero and Y=/ >1,
the function Y (m)in (4.1.19a) has two local maxima and one local minimum.
The positive (negative) one is the global maximum. The global maximum
m*=m*(i,v) is discontinuous at #’=0 for y> 1. All solution arcs m(h’) are
anti-symmetric with the local minima rising in 4 and the local maxima falling
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in /. The local mimimum arc starting at &’ =0 satisfies m(0,vy)=0 and
decreases in /.

Under regularity conditions the solution properties outlined above can
be generalized to the case where dF(y) = A{y)dy, - y) =f(). Let

du(x) = u(x*) — u(x),
where x* = Argmax{u(w)}. In this case, for du =0, one can show
C-=-c). MO=[EdF=0,
M”()= J§2dF,  c'(0)=M"(0),

so for h =0 two solutions m_=—m, appear for BJM”(0) > 1, and m =0 is the
solution for $JM”(0) < 1. Some conditions are needed on F to make ¢'(z)
display the qualitative properties of tanh(z) which were used above. We
summarize:

PROPOSITION 4.1.2. For the case dF = (1/2) (8_; +8,;) phase transition behavior
will appear, i.e.,the maximum of. (4.1.19a) wzll change discontinuously :from
negative to positive as du= u(+ 1) — u(~ 1) changes sign from negative to positive
provided that BJ > 1. Under regularity conditions this result can be generalized
to general F(.).

Let =, and =P denote convergence in dlstrlbutlon and in probability.
For use in further sections we need to show that m => m*, N — . A natural
strategy is to use the large deviations approach of Ellis (1985, cf. his
references to the joint work of Ellis and Newman), but u(.) causes an
obstacle in rewriting Pr{m e A} as a function of m and using large devia-
tions theory to obtain a law of large numbers (cf. for example Ellis, 1985,
p- 99). This obstacle seems to be a problem even if m* is a unique global
maximum of (1.19a) with locally strongly concave behavior near m* (cf.
Ellis and Newman, 1978b,d cited in Ellis, 1985, p. 342). However, it is not
difficult to obtain a law of large numbers,

PROPOSITION 4.1.3. Assume m” is a unique global maximum of (1.19a) with locally
strongly concave behavior near m*. Then m=sm".

PROOE. Let £>0. We use Chebyshev s 1nequahty to prove m =b m*. By
Lukacs (1975, p. 33, 37), =P m* implie s = m. By Chebyshev’s inequa-
lity (Lukacs, 1975, p. 9),
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Pr{lm—m* 2 €} < Var{m—m*} /¢, (4.121)
so it is sufficient to prove Var{r/r\z - m*} -0, N — . We must show,
(rd /N)Zu)i— mP2Y—0, N oo,

It is sufficient to show ( z Z(L)l.mi y/N? — m*2 . Hence, itis sufficient to show
( (oiu)j) — m*2, N - o, for i not equal to j. Show this by arguing as in (4.1.12),
(4.1.14), (4.1.15) to show (@, ®; ) — g(Bh + YR =m*2, N = oo,

We have briefly sketched the theory we need and have done a fairly
complete job for the two state case, Q = {- 1, + 1}. Turn now to a very brief
sketch of the K-state case for K> 2.

Theissue concerns construction of an IPS structure that is flexible enough
to yield a “landscape” that is tunable to each of K choices. To see the problem
look at the expression (4.1.7) copied below,

Zy=Yexp { B u(v) +(J/2) Qv,;/N22 + h(D vl Pyv),  (4.122)

and note how the convex term (J/2) (ZVi/ N'/2)2 rewards going to the
extremes of the choice set Q. Hence, this convex term plays a key role in
determining the limit via (4.1.19a), therefore placing more elements into Q is
not likely to give us the flexibility we desire even if we move the mass points
of Faround at will.

As a tentative proposal to be investigated in more detail in a future paper
we encode each of the K elements into a “bit string” of * 1’s. One can encode
2L elements using bit strings of length L. Let w;=(w,; ,...,w;)) € {~1,+ 1)L
Define u: {— 1, + 1}£ — R. Define u = - e for some bit strings in order to
deal with cases where K is not equal to 2L for some L. Define Z,, by replacing
the term, (J/2) (3 v,/ N'/2)? with

S, /2) VN2

where the sum runs from /=1, ..., L. Proceed as in the case L = 1 to develop
the limit theory.

The solution theory presented above will be used in the applications
below. The applications will induce dynamics on the solution for
m=m(BJ, Bh; u(.)) by inducing parsimoniously parameterized functional
forms for u(.), J as a function of past information. This, in turn will give us
flexible functional forms of dynamics on volume and stock returns, which
will be one of our key applications.
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4.2. Applications

In this section we deliver on the promised applications of the mathematical
technology in Section 4.1. But before we get into details of the examples we
should be clear about the goals we wish them to serve.

In particular we want the models to have the potential to contribute to
explanation of the following stylized facts laid out nicely by the paper of
Haugen, Talmor, Torous (1991) (hereafter, "HTT"”). (1) HTT (1991, p. 987) point
out the finding of Roll, Schwert, Cutler, Poterba, Summers as well as their
own work that it is difficult to relate “volatility, changes in volatility, and
significant price movements to real economic events”. (if) HTT (1991, p. 985)
find “ A majority of our volatility changes cannot be associated with the release
of significant information”. (7i} In studying the reaction of returns to changes in
volatility HTT (1991, p. 1001) find there is an asymmetry in the “reaction of prices
and subsequent mean returns (which is) consistent with non-linear risk aversion.

(iv) HTT (1991, p. 1003) stress the result of Roll that “much of the variance
in the equity return series may be related to either private information or
occasional “frenzy" unrelated to concrete information.” (v) HTT (1991, p. 1003)
stress Schwert’s finding: “Schwert (1989), in an exhaustive study, finds that
the volatility of stock returns are not closely related to the volatility of other
economic variables such as long and short term interest rates, the money
supply, and inflation rates.” (vi) HTT (1991, p. 1004) stress “..the fact that we
find a highly significant, positive price reaction to volatility decreases...the
fact that the price adjustments are followed by directionally consistent adjust-
ments in mean realized returns...further reinforce our confidence that, on
average over all events, we are seeing a reaction to changes in risk as opposed
to expected cash flow". With this factual background in place let us return to
the examples.

Examples 4.2.1-4.2.3 concern equilibrium asset pricing models where all
traders have mean variance demands and some traders have biases in their
expectations. Example 4.2.1 contains traders with biased expectations where
IPS theory is used to parameterize interdependence across biases and to locate
sufficient conditions for an effect of biased traders to remain in the large
economy limit. The example suggests uses of [PS theory to parsimoniously
parameterize interdependence of biased expectations in such a way that
econometric techniques based upon orthogonality conditions may be used to
estimate the parameters and test for the presence of biased traders. Examples
4.2.2 and 4.2.3 are variations on this theme.

Section 4.3 exposits an example which shows how interdependence
across agents in correlations of their own-income with the market leads toan
adjustment in conventional asset pricing formulae as weli as a source of
equilibrium trading volume. Section 4.4 contains a version of Campbell,
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Grossman, and Wang’s (1991) model with interdependence in trader risk
tolerances where the degree of interdependence may depend upon the past.
The fifth section, 4.5, contains a version of Hellwig’s (1980) model with
inderdependence in signal quality. Stephen Durlauf has stressed the point
that this kind of model can show how abrupt market movements can be
caused by changes in the degree of correlation of information between agents
rather than by large changes in information.

Section 4.6 briefly shows how interdependent firms in the Lucas (1978),
Brock (1982) asset pricing models can lead to large movements in asset prices.
The examples are all unified by showing how parameterization of the degree
of interdependence by IPS modeling leads to analytically tractable equi-
librium dynamics in the large economy limit which are suggestive of path-
ways through which small changes can have large impacts. Turn to describing
demand functions.

Thedemand functionsstress three channels of heterogeneity: (i) Differing
risk aversion parameters, (i) differing expectations or beliefs, (ii7) differing
covariance structure of own-income with the marekt. Let trader i have demand

D{p)=TEq / Vi{d) - Cov(q , w))/ VD), (4.2.1)

where p is asset price, 7 is risk tolerance, E;, V,, Cov,, are conditional
mean, variance, covariance on information available to ¢ at date ¢,
g =p,,+Y,, ~Rp,=excessreturnat t+1, p, ,y,, are asset price and
asset dividend (or net cash flow) atdate 1+ 1, R=1 + ris return on a risk free
asset, w/ = Wit is other sources of income to i at date ¢+ 1. We shall often
denote x=x,, x' =x, |, for any quantity, x, to save typing.

The demand function (4.2.1) can be obtained from a two period overlap-
ping generations setup where each trader gets first period income which is
allocated between the risky asset and the risk free asset. Utility is obtained
from consumption of all wealth in the second period. Wealth comes from (i)
other sources of income, (ii) earnings on the two assets. The demand function
(4.2.1) is derived by maximizing conditional expectation of mean-variance
utility or, under normally distributed returns, by maximizing conditional
expectation of exponential utility.

The assumption of two period lived traders is restrictive, but it should
be clear that the methods laid out here can be generalized to handle traders
with arbitrary lives.

In (4.2.1) there are three channels by which trader characteristics could
be related: (i) Expectational differences; (ii) risk tolerances; (iii) covariances of
excess returns with own-income.

First we deal with E;, V. Nelson (1992) has shown, in a diffusion context,
that frequent sampling within a period can produce an estimator of the
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conditional variance that is much more precise than the best estimator
of the conditional mean. For this reason and for simplicity we shall assume
V,=V, is independent of i. It will be apparent as we illustrate our methods
that this assumption can be relaxed at tne cost of considerable complexity.

Assume, w/ =p/p’ +y') + ¢/, and ¢ conditionally independent of p’ + ¥/,
divide both sides of (4.2.1) by N, sum over i to obtain (conditional on the
history of the economy at date #), suppressing ¢ for ease of notation,

(1L/MXE G /Vg) ~p) = (1/Vg) [E(TEG ) ~E'p,, N >0, (422)
where E* denotes expectation with respect to the measure, §t*(4), defined by
/NI, I, p) € Al=u*(A), N > . (4.2.3)

Here I, denotes the information set of trader i at date ¢, A is a set of agent
characteristics (which includes choices), 1/(1;, I, p;} € A is theindicator func-
tion of the event [(1;, /;, p;) € A} which is unity if (1, /;,p;) € A, zero other-
wise, and = denotes weak convergence. The theory of Section 4.1 locates
sufficient conditions for the weak convergence of (4.2.3). We shall assume
without further mention that these sufficient conditions hold.

Suppose there are x shares outstanding per trader. Then equilibration of

demand and supply per trader yields, in the large economy limit, by (4.2.2),
(1/ V@) IETEG ) - E'p;=x (4.2.4)

We show the value of the modelling of Section 1 by applying it to a
sequence of examples based on the above.

Example 4.2.1

Consider the “noise trader” theory of DeLong, Shleifer, Summers, and
Waldman (1990), hereafter “DSSW.” Let us use the theory of Section 4.1 to
locate sufficient conditions for noise trader risk to matter in the large economy
limit and to suggest a method of estimating the effect of noise traders using
the methodology of Hansen and Singleton (1982).

For simplicity assume homogeneous conditional expectations on
variance and an estimation procedure for the conditional mean with the
following structure of errors across the set of noise traders, Q = {bear,
bull)2={-1,+1}%

E, 0 +¥) = byy, + [1 + b0 JEQ +Y) | (4.2.5)
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where at each date 1, E(p’+)) is conditional expectation on a common
information set available to all ¥ traders, {0, = (0, , ®;,)} is distributed
according to a product form (like Example 4.2.3 below) of (4.1.3’), (4.1.5)
where u(w, 1) is parameterized according to a measure of how well belief ®
produced risk adjusted profits (utility) in the past.

In DSSW (1990) the bias in expectation is additive IID so b, =0 captures
the flavor of DSSW. So let us put b, = 0 for specificity. But, the reader should
keep in mind that we can deal just as easily with multiplicative errors as
additive errors. Put x=p = 0, assume constant risk tolerance across agents,
bring back subscripts for clarity in (4.2.4) to obtain, from (4.1.19a,b),

Rp,=bym +E(p, .1 +¥, 1) (4.2.6)
Write (4.2.6) in the form
E{byny +(p,,  +¥,.,)—Rp,} =0. (4.2.7)

Equation (4.2.7) can be used to generate a set of orthogonality restrictions so
that the parameters b, and the parameters embedded in m;‘ via (4.1.19) may
be estimated (given a specification of behavior of (B, J, &, u(.)) over time)
following the Generalized Instrumental Variables (GIV) used by Hansen and
Singleton (1982). We speculate that the parameters of rather elaborate
dynamic specifications could be estimated by adapting the simulation es-
timator methods of Hotz, Miller, Sanders, and Smith (1992). In this way
returns data can speak to testing for the presence of noise traders with, for
example, additive errors in formation of conditional expectations by testing
H,: by = 0 against the alternative H, : b, not zero.

Of course some conditions must be imposed for the GIV procedure to
“identify” the parameters of interest. A more serious problem with testing
(4.2.7) concerns confusion of movements of the marginal rate of substitu-
tion in the CCAPM (Lucas (1978)) context tested by Hansen and Singleton
with presence of noise traders in the context (4.2.7). But this problem could
be dealt with by a noise trader component into the CCAPM setup of Hansen
and Singleton (1982), following a procedure analogous to the above and
deriving a general set of orthogonality conditions in which both the
“pure” Hansen and Singleton CCAPM and the “pure” noise trader models
are “nested.”

Example 4.1 shows how a rich class of models may be formulated that
(i) are econometrically tractable to GIV methodology, (if} can be used to locate
sufficient conditions for noise trader effects to survive the washing out effect
of the law of large numbers, (There must be aggregate shocks to the u(. , f) or
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BJ > 1), (iii) can be used to locate sufficient conditions for the additive IID
errors of DSSW (1990) to appear in the large economy limit, (iv) can be enriched
by different parameterizations of the (. , ) in (4.1.3"). We point out in passing
that the presence of noise trading effects in the context (4.2.6) can be tested by
using the West (1987) test. His procedure tests for the presence of terms like
by in linear present value models (4.2.6).

This is a good point to add a few words about justification for study of
models with dispersion of beliefs. Antoniewicz (1992) in her work on volume
reviews received work on volume dynamics. The consensus of this work is
that trading volume is a very persistent series that is difficult to reduce to
white noise by standard “detrending” methods.

Sargent (1992) shows how hard it is to preserve volume persistence in
settings where the no-trade theorem becomes operative through learning.
Therefore it appears that persistence in belief disparity will be needed if one
is to get volume persistence out of belief disparity. While we shall exhibit
models below that generate volume dynamics from heterogeneity in risk
aversion and correlations of own income with the market these models do
not seem right for explaining high frequency volume dynamics.

One justification for persistence in belief disparity is the work of Kurz
(1990, 1991 and 1992) who develops a theory where all traders see the same
data, form bulk quantities such as time averages, all time averages converge
for each trader, yet disparity in limiting quantities remain. There is enough
stationarity in Kurz’s setting so that time averages converge, yet there is
enough nonstationarity that each agent may not converge onto the same
probability (the true probability). For the context of persistence of belief
disparity it may be useful to think of Kurz’s setting as a metaphor for a
situation where data is arriving fast enough for each individual trader’s
estimators using time averages to converge but where the underlying system
dynamics is changing slowly but fast enough that traders do not “lock onto”
common agreement about the underlying probability. Le. their estimators do
not converge onto common limits.

Our type of modeling may have use in the future as a way of locating
sufficient conditions on the degree of dependence of individual beliefs so
that an aggregative effect remains in the cross sectional large economy
limit. Kurz (1992) uses his theory to argue that the Dow was grossly
overvalued in 1966. This argument requires that belief bias remain in the
large economy limit. It is beyond the scope of our paper to say more about
Kurz’s stimulating work here. Suffice it to say that we believe that belief
disparity plays an important role in volume dynamics and study of such
models is justified. The dynamics of such models may be usefully dis-
ciplined by evolutionary modeling as in Blume and Easley (1992). Turn
now to a related class of examples.
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Example 4.2.2

Brock (1991a, p. 136-137) sketches a model where each trader has a choice of
two strategies: — 1 equals a chartist “trend chasing” strategy and + 1 equals a
“fundamentalist” strategy. Each of these strategies is a recipe for updating
their estimate E,(p" +y) at each date r. Traders keep a record of the profits
earned by the two strategies. Brock (1991a, p. 136-137) updated the “field”
parameter /,in (4.1.7) as a function of relative profits at t. We improve on this
by using the theory in Section 4.1.

It is more natural to put 4,=0 in (4.1.7) and define u(w, r) to be the
estimated profit for strategy w € Q={~ 1, + 1}, where the estimate is based
upon the common information /, available to traders at date 1.

We define the fundamental strategy by putting

E+1,r(p,+y’)=Ery'+ErplF,r+l

where {p} is the forward rational expectations solution process of the equa-
tion Rp,= E{p, | +y,,;11}. As in Brock (1991a, p. 136), for strategy w=-1,

put,g,=p,+y,,

E, 44 =pr/R+b, b=b_ +Mg,_;~MA(l,t-1)), (4.28)

MA(L:t-1)=[q,_,+...+q,;_ (1—1)] /!=moving average with / lags. (4.2.9)

Suppose A>0. Note that g,_; >MA(l,t~1) causes the bias over the fun-
damental to be increased; vice versa for “<”.

Assume, for clarity that 1,= 1, Cov,, =0, x=0. Close the model by using
theexpectation £ (g, , ), ®; € {~ 1, + 1} toform thedemands (4.2.1). Assume,
at each date 1, the probability trader i chooses ,, is given by the MFT-discrete
choice model (4.1.3"), (4.1.5).

We have a mixed discrete/continuous choice problem where (4.1.3")
serves as the discrete choice model for which strategy (conditional expecta-
tion) to use in forming demands. The continuous choice problem is the choice
of optimum quantity of stock and bond to purchase given the conditional
expectation (strategy). For each fixed date ¢, the N — o equilibrium (4.2.4)
may be rewritten

Rp,=[(1-m)/2]E_; (q,,,)+[(1 +m)/2E | {g;.), (4.2.10)

where we choose m; to be the largest (in absolute value) solution with the
same sign as du to,
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m = {exp[BJm + Bdu] — exp[— BJm]} / {exp[BJm + Bdu] + exp[- BJ]}
= tanh[BUm + K)] (4.2.11)

where b’ =du/2, du=u(+1, 1) — u(— 1, t) and u(w , r) are measures of how well
following strategy w has generated utility for the trader had he followed it in
the past. We assume this measure is a matter of public record available to all
traders, but choice of w is governed by (4.1.3"). One may now study the
dynamics generated by (4.2.10). Unfortunately we must leave it to future
research.

Example 4.2.3 (Based on Arthur, 1992)

Brian Arthur has written an interesting paper where he argues for replacing
the deductive mode of theorizing by an inductive mode of theorizing. He
shows that inductive modes are analytically tractable by considering a stock
market where traders take positions by monitoring a collection of predictors
H,,...,Hp. Suppose we encode these using bit strings we {~ 1, + 1}t of
length L as suggested at the end of Section 4.1. Introduce social interaction
terms for each slot of the bit string and introduce a record for each predictor
on how well it has done in the past. Base the utility w(w, £) on this record at 1.
Let, ateach dater, discrete choice occuraccording to the natural generalization
of the discrete choice model (4.1.3’). Then join Arthur’s approach and Ex-
ample 4.2.2 to develop the dynamics. Our modification of Arthur allows
“herding” which is induced by the interaction terms {J,}.

The dynamics of this modified Arthur model should be very rich.
It would be interesting to simulate it and see how easy it is to find
parameters such that the output of returns and volume replicate the
stylized facts reported by HIT which were discussed above. In principle
the parameters of this modified Arthur model could be fitted to a subset
of data to replicate relevant moments in sample. Then it could be evaluated
by tests out-of-sample. Turn now to an example that generates trading
volume via heterogeneity in correlations of own income with the market
portfolio.

4.3. A Model with Volume and Price Dynamics

The volume dynamics are complicated in the general model (4.2.4), but they
can be worked out and volume data may be used in estimation. However,
simple volume dynamics may be obtained from (4.2.4) with

wi =P’ +Y) +E, 43.)
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where {p} has the probability structure (4.1.1), ¢/ is independent of p’, y* and
satisfies (1 /N)Zsl.’ = 0.

Assume there is supply of x shares per trader. Assuming homogeneous
expectations on conditional mean and variance in (4.2.4), equating demand
to supply of shares for N traders yields, introducing a first type of trader
which has all p; equal to a constant, we have,

x=(1/N)Y.Dip)=(1/N)DIEG /Vad)N—pil
=TEq /V{q) = np, — s, (4.32)
where

Py= 2.0,/ Ny= py(m), N> oo,  N,=mN,n, fixed, k=1,2. (43.3a)
i

Note that ¢" depends upon N but we abuse notation by neglecting this
dependence in the notation. Here we suppose p, is constant across the N, type
one traders, p,(w;,) is the state of correlation for type two traders where
Prim} is given by (4.1.5).

This raises an issue of interpretation. One interpretation is to put
u(.)=0 and simply treat (4.1.5) as a convenient way to parsimoniously
parameterize cross dependence of p in group two. Equation (4.1.5) may be
motivated by placing the traders on a Durlauf (1991a,b) type lattice with
probability structure (4.1.3) on the p’s of (4.3.1). The lattice captures the
relatedness of trader own incomes to each other. Equation (4.1.5) is an MFT
approximation to (4.1.3) that is rough, but is accurate enough to suggest
sufficient conditions for phase transition type behavior to take place (cf.
Pearce, 1981). In any event this parametrization forces one to realize that some
measure of cross dependence plays a key role in preventing the law of large
numbers from “washing out” the p-effect, i.e, preventing p, from converging
to 0, as N — e unless this is “forced” by putting 4 not equal to zero. Small
changesinh (or u(.)) canlead to large effects only when some measure of cross
dependence is big enough. Equation (4.1.5) seems as attractive a way to
capture this kind of effect as any.

Another interpretation is to imagine a discrete menu of funds with the
same conditional variance but varying correlation withownincome for group
two traders. Consider thespecial case of a low correlation fund, — 1 and ahigh
correlation fund + 1 Let a measure of past performance of each fund
u( £ 1, ) be available at each date t. Then each member of group two picking
which fund to buy shares in according to the discrete choice model (4.1.3) will
lead to (4.1.5).
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In this two state case, at each point in time, the limiﬁng value of 62 will be
Po(m) = [(1 = m) /2]p,(= 1) + [(1 +m) / 2]p,(+ 1). (4.3.3b)
Solve (4.3.2) for E,q’ / V/(¢’) to obtain
Eq /V(g)=1x+np; +nyp,(m)/t=z, . (4.3.4)

In order to simplify the volume dynamics we ignore trading within
group two and measure trading across groups one and two. Denote by D,,
the equilibrium demand by trader group k=1, 2. With this qualification a
natural measure of trading per capita per share can be generated from the
following, which must hold in equilibrium,

Dy=Dy oy =nuz,—2_y) (4.3.5)

Motivated by (4.3.5) we define the turnover measure over the period
[t-1,1], denoteitby V,

Vi=ntzg,—z,_)/x (4.3.6)

Equation (4.3.6) can be turned into a useful equation by parameterizing
the volume dynamics via parameterization of {u(.) , J, , h} as functions of, for
example, past y-innovations and past volume. Given a probability structure
on {y}, for example, Autoregressive with Independent and Identically Dis-
tributed (1ID) or Martingale Difference Sequence (MDS) innovations, and a
derived dynamics for {m,), where m, = (J,, h, ; u(.)); equation (4.3.4) may be
solved by forward iteration. This can be written as the conditional expectation
of a capitalized sum of “adjusted” earnings where the capitalization factor is
1/R. Both the price and volume dynamics can display abrupt changes
to small changes in u(.) , h, when BJ, > 1. We believe it would be interesting to
“calibrate” models like Examples 4.1-4.3 and see how many of the stylized
facts listed by HTT can be replicated. More will be said about this and other
applications below.

4.4. A Rational Expectations Models of Trading Volume and Liquidity Providers

Campbell, Grossman, and Wang (1991) have developed a rational expecta-
tions model with two types of traders. Type A have constant risk aversion
parameter  and type B have stochastic risk aversion parameter b, at time ¢.
We use the probability structure of Section 1 to “derive” a stochasticdynamics
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for b, We outline how the model may be “solved” for a closed form solution
by a dynamic variational approximation analysis.

We use similar notation as CGW. Put R=1+r, r >0 equal to return on
the risk-free asset which is in perfectly elastic supply. Let X be supply per
capita of stock, each share pays D,=D+d,, d,=ad, _,+u,, 0o <1, 4, 1D
(0, 62). There are two type of investors A, B with mean variance demands,

X¢=EQ, L1/ yNarlQ,, |11, Wy=a, Wy=b,1,=(P,.D,,S), (44.1)
where Q, =P, +D,, - RP,= excessreturns, u, | =S,+¢,, , {5, ¢, |}
is jointly IID with both means zero, E[u,, ,15,]=5, Varu,,,|S]=0?
Var[S,] = 0’%. Put

Z,=ab,/[(1 ~ w)a+wb], w=fraction type A, (4.4.2)
assume {Z) satisfies E[Z, || Z]=v,+7,Z, 0<Y, <1, VarlZ, | 1Z]= 0%, as
sume 6% < (R~ 7,)X(R - 0)?/4XX(R?02 + 62). Then CGW show there is an equi-
librium price function of the form,

Plzpo+p]d,+pzZ,+p3S,,pl ,p3>0 s Pp <0, (4.4.3)
Py =0/(R=0), p3=1/(R-0), po=(1/(R=1)[D+Yyp,]. (444)
Py = (172X — (R~7)) +[(R-v))* -
—4(1/ (R - 0))X(X03) (R?02+02)]1 /2 }, (4.4.5)
Q,,,=D-rpy) +p,[Z,,,—~RZ)+(1/(R-a))S,, ,+ (R/(R~)),, . (44.6)

Add the demands, use the market clearing condition and the form of the
solution price function to cbtain

EQ,, 1) =(XcH)Z,, Var(Q, , 1) =0} =(1+p,?0} + pjos+pic;.  (447)

Note that (4.4.7) says that excess returns are positive with the size increasing
as the measure of average risk aversion, Z, increases. Excess returns also
increase as the conditional varianceincreases. However, note that conditional
variance is constant. Hence the CGW model is not able to explain the well
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known serial correlation structure of conditional variance, i.e. the Autoregressive
Conditional Heteroscedasticity (ARCH) documented by the studies cited by
Bollerslev, Chou, and Kroner (1992). This is because the CGW modelisalinear
model. Turn now to a nonlinear model which nests the CGW model:

Let there be three types of investors, A, B, C. Types A, B are as in CGW. At
date 1, member i of type C has risk tolerance given by T (w,). Passing to the
limit as the number of traders, N, goes to infinity but holding the fractions
n, k=A, B, C fixed we have, equating demand to supply,

E[Q,,, | 1] =(X03)Z,, 05,=Var(Q,,, 1), Z,=1/InT,+m1, +n.1(m)] (448)
where
T (m)=[(1~m)/2T(-= 1)+ [(] +m) /DT (+ 1),

m,=m(J,, h),T,=1/b, b,=risk aversion of type B as in CGW.If {(J,, h)} isa
stochastic process such that {Z} satisfied E{Z, , | 1Z]=7,+V,Z, 0<7, <1,
Var{Z,, | 1Z)=0% we could simply copy CGW and find their equilibrium
price function.

But we want to parameterize {(J, , k, ; u(.))} as a function of past volume
and past returns in such a way that we have the potential to replicate the
stylized facts collected by HTT. This requires a nonconstant 0 and a natural
way to introduce this is to parameterize J,, k, as functions of the past. For
example, a large “aggregate dividend surprise”, D,~ E,_ D, , may be as-
sociated with a change in the degree of dependence of risk tolerances in the
future,ie., achangeinJ,_ .

While itis beyond the scope of this article to develop them, there are two
routes to dealing with the third class of traders in the CGW model. The first
one is to take a parameter like n and expand the equilibrium in a Taylor series
in n_around the value n.= 0. In this way one can exploit the known CGW
solution (n, = 0) to build up an approximation to the unknown solution for
positive n.. The second route is to solve T period problems by backwards
“dynamic programming” from a known terminal value p; at T. A typical
value for p, is zero.

4.5. An Asymmetric Information Rational Expectations Model

Hellwig (1980) is a well known paper that derives a closed form solution for
the large economy limit for a rational expectations model where N traders
each receive signals about the future earnings of an asset. The solution shows
how information is aggregated by the rational expectations price function in
a competitive market.
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iror
t

Fix.date , suppress “t” in the notation, and append to Hellwig’s model
the following probability structure of signal quality across the setof NV traders.
If trader 7 is in.state — 1, let her signal variance be 52> 52 which is her signal
variancein state+ 1. Let o = (®, ,. .., ®y), ®; € {= 1, + 1} denote a configura-
tion and let configuration probabilities be given by the Curie-Weiss prob-
abilities treated in (4.1.17), (4.1.18) above. We have positioned ourselves to use
Section 5 of Hellwig (1980) where he derives the form of the equilibrium price
function in the large economy limit.

Define a trader to be “informed” if she is in state + 1 so that her signal
variance, s2 is small. Traders in state “— 1" are “uninformed”. Now check that
Hellwig’s Assumptions B.1-B.4 are satisfied and take thelarge economy limit.
Assume (X,Z.g;,...,¢y) is Gaussian conditional on ® with the same
diagonal variance covariance structure as Hellwig. Let f, f, denote the
limiting fractions of uninformed and informed traders.

Look at Hellwig’s equations (1980, p. 492), where we use his notation
except we suppress the “upper *”, write random variables as caps, put
A equal to risk tolerance, and B =Alf./ 52 +f+/sz], where, by (4.1.17),
(4.1.18),

fo=(0=m)/2, f,=(1 +m)/2, m=0(m) =tanh(BJm +Bh),  (45.1)

for u(.) = constant,

P=my+nX-YZ, (4.5.2)
ny = [XA%A + 6?ZAB) /D, (4.5.3)
7 = [02BA? + 62AB?] / D, (4.5.4)
v=[62A% +6?AB)/ D, (4.5.5)
D = 62BA? + G2AB? + AA? (4.5.6)

Concentrate first on the case u(.) = constant. If the mean field equation,
m = tanh(BJm + Bh), 4.57)

has two solutions, choose the one with the same sign as & to be compatible
with (4.1.19a).

The following four points may be made about this version of Hellwig’s
model. First, the correlatedness of the trader signal quality states may lead to
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a “phase transition” where the equalibrium price relationship makes an
abrupt shift in reponse to small changes in (/, k). Stephen Durlauf has made
the important point that this kind of model can be used to show how large
market movements may be caused by changes in the degree of correlation of
information between agents rather than by large changes in the information
itself.

Second, the model raises issues of how to measure factors that might
effect the correlation strength of signal quality across agents. This in turn
impacts on how rapidly the price function impounds information and im-
pacts on the likelihood of abrupt changes in returns which may appear to be
blowoffs and crashes.

Gennotte and Leland (1990) study how the sensitivity of demand of each
trader type demands upon relative quality of signals and how this feeds into
above changes in the price relationship provided their outside hedging
function is upward sloping. The formula above shows how similar behavior
can be obtained without the need for such an outside hedging function. Also
note that it may be possible to “endogenize” the outside supply of shares, Z,
by a community of noise traders modelled as in Section two above. A
generalization of Hellwig (1980) to allow a probability structure on signals
themselves, rather than just signal variances, like that in Section 1 would
allow more abrupt changes in the level of prices to a small amount of “news”,
but that attempt must await future research.

Third, note the qualitative role of the correlation structure of signal
receipts of inducing abrupt changes in the equilibrium price function, and,
hence, in equilibrium returns. This feature is likely to remain in more
elaborate models.

A fourth point is this. We may introduce a discrete choice decision into
the model where we allow agents to choose high signal quality strategy.
w=+ 1, (for which a fee of F is paid each period) or choose low signal quality
strategy w = — 1, (which is free). Ateach date, choice is conducted according
to the discrete choice model (4.1.3") where u(w , #) is based upon a measure of
past performance of strategy choice w € {~ 1, + 1}. Two separate cases can be
treated: (i) u(w, ¢) is updated according to a publically kept record of ex-
perience with strategy ; (ii) u(®, f) is updated according to each individual
trader’s experience with ®. Discrete choice model (4.1.3), (4.1.3") governs the
probability structure in both cases.

A version of this model under research parameterizes correlation
strength J as a function of past volume and past “surprises” at the time slot
frequency. Thisis an attempt to capture the idea that high information channel
congestion forces traders to condition on “coarse” information sets such as
past prices which should lead to higher J which leads to higher volatility, i.e.,
larger changes in response to vibrations in A, u(.). During periods of low
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congestion traders should be able to getbetter quality signals on X from more
independent sources so that J should be lower. Regardless of the loose
heuristics, the idea is to parameterize J, k, u(.) a functions of past price
behavior, past volume, and past “surprises” (a measure of modulus of past
forecast errors) in such a way that the data can speak to the form of this
relationship. One version of this model that we have formulated leads to
unpredictable first conditional moments of returns but somewhat predictable
higher order conditional moments of returns.

The six applications above have been to financial models. We hasten to
caution the reader that two period models and incomplete markets models,
which we use to illustrate the usefulness of IPS methods are dangerous to
apply in practice. This is partly because we have arbitrarily assumed that
markets are incomplete in the Arrow-Debreu sense without giving a theory
of why these markets are missing.

We have said nothing about the potentiality of options markets and
other derivative security markets to ameliorate the potentiality for abrupt
changes in returns in response to small events. Longer horizon models
typically will lead to more smoothing behavior. More realistic models than
those treated above will need to be investigated before it can be claimed that
anything said in this paper pertains to financial reality. The point made in the
financial section of this paper is simple: Models of this type are tractable
to econometric methods such as Hansen and Singleton (1982), and Hotz et
al. (1992). Indeed Tsibouris (1992) has estimated a version of an IPS model
and tested the orthogonality restrictions with a degree of success com-
parable to received CCAPM theory. IPS models like those sketched above
have the potential to help shed light on the puzzling stylized facts of HTT.
Turn now to a very brief sketch how MFT/IPS/discrete choice methods
may be useful in generating a new class of closed form solutions for simple
macro/finance models.

4.6. A Macro-Finance Equilibrium Asset Pricing Model with Interacting Agents

We show off the flexibility of the approach to interactive systems modeling
advertised above by exhibiting a macro-finance asset pricing model with a
closed form solution. Consider Brock (1982, Example 1.5) where a repre-
sentative “stand-in” consumer solves

t=o0

Max EO{Zﬁ" Nog(c(9)) st. ¢, +x,:y,EZA”xg‘~ " in,_, <x,_;, (461)
t=0

where ¢,, x,, x,, A, 3, B, 0, denote consumption, capital stock, capital stock
allocated to process 1, productivity shock to process i, total output plus total
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capital stock carryover (all at date f), discount factor on future utility, and
elasticity of production function. It is easy to see that the optimal solution of
(4.6.1)is x, =Py, c,= (1 - oB)y, x; = n;x, where the (n,} solve

Max Elog(Y A; ,, M&x®), s.t. Y m, =1 (4.6.2)

Note that (4.6.2) implies the {n,} do not depend upon x, . We have now laid
the foundation for building and solving an interacting systems model.

First, note that the solution form x, = afy, does not depend upon the
dynamic structure of {A,}, hence we may preserve the same form of solution
by introducing any pattern of externalities we wish and any number of agents
we wish, so long as all of them are log utility maximizers facing problems
with the same structure as (4.6.1), and all of them face the externalities
parametrically when they solve their optimization problems. However, we
wish to be able to compute statistics from aggregate quantities in order to
make contact with Durlauf’s (1991a, b) work on disparities among income
and wealth across sites.

The solution for the {n],,} in (4.6.2) is easy to find under the assumption
that Pr{w,} is invariant to permutations within @, for each £. In this case we
have

v,=1/N, forall i,z (4.6.3)
x,= 0B YA (17N . (4.6.4)
Given (4.6.3), (4.6.4) there are now two routes to obtaining a class of

closed form solutions in the large economy limit, N — . First note that Section
1 locates sufficient conditions on the MFT /IPS probability structure for,

YA /N)=EA;, N> oo, (4.6.5)

so0 there is no problem for o. = 1. Second, in order to deal with & < 1, consider
an economy where A, = N - %Ay, - With this scaling (4.6.4) reduces to

x,= oY A1/ N . (4.6.6)

One may now investigate asset prices following Brock (1982) for specific
examples such as simple MFT parameterizations of A, =A(w,) with @=-1
for low A, @ =+ 1 for high A using the simple equations (4.1.17), (4.1.18). In
this way one can show how BJ> 1, and an 11D process for {4} with mean zero
and small variance can lead to big macro economic flucations.
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A closely related type of example would be to replace the probability
structure in Durlauf (1991a,b) with one of the MFT/IPS probability structures
treated in this paper. The “Curie/Weiss” structure leading to (4.1.18) is simple
enough to generate closed form solutions. The version of the discrete choice
model reported by Proposition 4.1.2 is simple enough to apply to Durlauf’s
firms’ choice of two technologies. While the resulting model would give
something closer to a “closed form” solution, we doubt that it would be as
rich as Durlauf’s model.

5. Summary, Further Remarks, and Conclusions

This paper has tried to illustrate the usefulness of MFT/IPS methods as an
input module into producing econometrically and analytically tractible
models of use to finance and macroeconomics. We concentrated on finance
and stressed the potentially of MFT/IPS models of addressing stylized facts
which stress the apparent lack of connection of movement of stock returns
and volume to “fundamentals”. This is a natural place to argue for the
promise of this type of model in being able to deal with stylized facts such as
HTT (1991).

HTT (1991, p. 1006) state: “The large number of volatility shifts that we
detect, and the fact that we are unable to find significant, real economic events
in the neighborhood of a majority of these shifts, lead us to the conclusion that
we may be observing instability in the noise component of volatility stem-
ming from the microstructure of the stock market. Thus while our findings
support the notion that changes in risk premia may serve to partially explain
the excess volatility observed in stock prices, the apparently excessive
volatility of volatility which we observe only serves to raise further questions
regarding our ability to account fully for the behavior of stock prices through
current financial markets paradigms”.

Note that HTT stress the lack of a linkage between real economic events
and the volatility shifts, and the asset pricing models sketched above generate
large changes in response to small changes in du or 4 provided BJ> 1. The
parameter P is easy to interpret in the models built on the foundation of
discrete choice such as (4.1.3). It is simply the intensity of choice and is a
measure of the level of sharpness in choice. The parameter J is a measure of
the strength of “ties” to a relevant “reference group” for each agent. Note that
if intensity of choice is high we do not need much “sociology” for BJ to be greater
than one. It is also plausible to think of parameterizing B, J as functions of the
past history of the economy and estimating the parameters using, for example,
the Generalized Instrumental Variable procedure (Hansen and Singleton, 1982).
This is a good time to address a side issue that arises in IPS modeling.
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IPS modeling is sometimes criticized in economics because it is said that
there is no natural interpretation of the “inverse temperature” parameter f3
and even if there were the inverse temperature § is set exogenously such as
controlling in a laboratory experiment or controlling by outside cooling or
heating. Per Bak et al. (1992a, b) argue that sandpile models are superior to
IPS models because the move to criticality is “self-organizing” rather than
being forced exogenously.

While this argument has merit we believe that both types of models
should be studied for the following reasons. (i) When IPS models are given a
foundation in discrete choice random utility theory the interpretation of
becomes natural and we can imagine parameterizing it to capture economic
incentives to make sharp or loose choices. (if) The parameters J;; become a
tractable way to capture strong and weak ties between agents.

(iii) Since discrete choice econometric theory and IPS theory are well
established we can draw on it to generate broad classes of econometrically
tractable models as illustrated by the six examples above. Furthermore
Anderson, de Palma, and Thisse (1993), show how there is a parallel be tween
CES production functions and discrete choice theory and, hence, B is related
to the elasticity of substitution in their CES production function. They show
how welfare measuresin discrete choice theory relate to prod uction functions.
The welfare measures treated in discrete choice theory are essentially the same
as free energy expressions in IPS theory. This parallelism between economi-
cally interpretable quantities and physically interpretable quantities is beauti-
ful and useful. (iv) Sandpile-based models still need an outside source (e.g.
falling sand) to drive the pile to criticality. (v) The sandpile theory is not yet
developed enough to conduct estimation and hypothesis testing which is
fairly straightforward to do in the six examples laid out above. We conclude
that it is wise to pursue both approaches because there are advantages and
disadvantages to each.

Appendix

General Probability Structure with K Types of Interacting Agents

The interactions will be considered over disjointsets A , ..., Ay where types
are homogeneous within each setbut heterogeneous across each set. Thelarge
system limit (as N = total number — ) will be taken by holding the fraction
of each type k=1,2 ..., K constant. To formalize this let Q be a set of real
numbers, let Q,, be its N-fold Cartesian product, we Q,,

Pr{o} =exp[BGIPy(@) /Z , G=(1/2)Y, Y M I (NM,;+ X b M,, (1)
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where M, = Zmi where 2 isoveriin Ayand Z= Zexp[G(v)]PN(v) over all v.
Here P,(v) denotes the product probability on Q; induced by the common
distribtion function F on Q. Wewill concentrate on the case where Q is finite

and F is a sum of “dirac deltas” but use 2, and jinterchangeably to suggest
the natural extension to a continuous state space. We shall also assume the
utility functions u(.) treated in Section 4 are constant. Once one sees how to
generalize Section 4 for this case it will be straightforward to do it for utility
functions.

Thebest way to think about this structure is to partition the vector w thus:
List first the components i in A|, second the components i in A,, etc. The
probability structure captures homogeneous interactions within each set of
entities i € A, and captures heterogeneous interactions among entities across
sets A, ..., Ag The strength of interactions within A, (across Ay A) is
measured by J,,(N) ( by J,(N)) where the interaction strength will decrease
linearly with N in this paper. That is to say the interaction strength becomes
uniformly weaker across and within all sets of entities as N increases.

For future use, we want to find limiting values of the following statistics:

my=Mg /N, = (), i€ A 2)

where N, = # of elements of A, N, /N =n,, and, N, N — c with n, fixed. Here
{.) denotes expectation with respect to the limiting probability, as N — oo,
defined by (1) and = denotes convergence in distribution. Details on how
to define the object, { . ), will follow in due course. We show now, that if we
put J(N)=1,/N, I, constant, the limiting value of (2) is given by a small
generalization of Kac (1968).

At therisk of repeating material in the text, in order to see the Kac method
with a minimum of clutter, deal first with the case K=1, I,,=J, h(A)=h,
N,=N, r'r\zk =m. Compute Priw}, Z=Z,,. We have

Zy=Yexp { BI(I/2) v,/ NV 22 + h(Y v )1} Py(v) 3)

Z isoverv e Q. Do the following steps. Put B = 1 to ease notation. First, use
the identity

expla?] = (1 /@2m))}/ 2jexp[— x2/2 + 21 2xa)dx, )
and, second use the change of variable y =x(J/N)! /2 to obtain

Prin) =(N/2nJ)1/2 jexp[— y2N/7201] [expl(y + B JdyPy(®) / Zy,  (5)
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Zy =/ 210) expl=- yN /2 [ MGy + hylay, )
M(z) = Zexp[zi](lF, H is product over i=1,2,...,N. 7)
EeQ

Note that we use M to denote “moment generating function” for (7). Compute
m=1lm{{[(1/N) (Y 0)] )}
= tim {Je(h + y) [KG)Ndy / [Koyas)
= [oh + yuyian), ®
where, 1, (dy) = 8_‘,*(dy), N = oo,
K(y)= M(h + y)expl= y /21, ©
gl -+ y) = (EexplECh + )IdFE)) /MO +y) = MG+ 3) /M +). (10)

Apply Laplace’s method (cf. Ellis, 1985) to see that, as N — o, all probability
mass is piled onto y* = Argmax{M(h + y)exp[- v/, e, Hy(dy)= 8..(dy),
N — eo. Hence,

y* solves JM'(h+y)/M(h+y) =y, m=M(h+y)/Mh+y%.  (11)

Now, Ellis (1985, p.38) shows c(z)=log[M(z)] is convex, therefore
c'(z) = M’(z) / M(2) nondecreases in z. Make the modest additional assumption
that¢’(z) increases in z. Then it is 1-1 and it follows that

m=c(Jm+h)y=M({Um+h)/MJIm+ h) 12)

In order to study equations (11), (12) look at the special case,

Q={-1,+1},dF (a)=(1/2) 2.8, where 8 puts massoneona =- 1, + 1, mass

zero elsewhere. We have, recalling the definitions of hyperbolic cosine, sine,
and tangent,

M(z) = cosh(z), M’(z) = sinh(z), ¢’(z) = tanh(z), (13)

m = tanh(Jm + h) (14)
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Equation (14) is Ellis’s Curie-Weiss mean field equation (Ellis, 1985, p. 180, p.
182) where we absorbed his B into /, k. Turn now to the discussion of this key

equation.
Following Ellis it is easy to graph (14) and show that for h =0, there is
only one solution, m =0; but, two solutions, m_=-m_, appear as soon as J

becomes greater than one. For # not zero the one with the same sign as & is
chosen. A “phase transition” or “spontaneous magnetisation” is said to
appear when J becomes greater than one.

Before turning to central limit theorems, we remark that the solution
properties outlined above can be generalized to the case where
dF(y) = f(y)dy, f (- y) =f () and some regularity conditions. In this case one
show ¢'(-2)=~c"(z), M'(0)=|EdF=0, M”(0)= féZdF, c’(0)=M"(0), so for
h =0 two solutions m_=—m_appear for JM”(0) > 1, and m = 0 is the solution
for JM”(0) < 1. Some conditions are needed on F to make c’(z) display the
qualitative properties of tanh which were used above.

Ellis (1985, pp. 187, 207, and reference to work of Ellis and Newman for
general J, and h not zero) gives central limit theorems. In particular, for the
case J< 1, h=0 we have the central limit theorem

NV 2(m —m) — NO , 6%(J , 0)), N = o, 62(J,0)=(1 —J ). (15)

Note how the variance tends to infinity as J tends to 1 from below.

Remark: It is easy to show using the same type of argument as that above
that the covariances ( (w,-m) (®, , —m))=0 in the limit for all integers L.
That is why there are no covariance terms in (15). This appears to be a
contradiction to the whole theme of this paper which is to show how models
with correlated characteristics could be parsimoniously parameterized in
such a way that econometric estimation is possible.

In order to explain this apparent contradiction we point out that Kac
(1968, p. 258) shows that the Curie-Weiss probability structure we are using
here is the limit as Y — 0 of a class of structures indexed by y which contain
local interactions which do give nonzero correlations. As y— 0 the range of
interactions becomes longer while the strength decreases in such a way that
the Curie-Weiss equation (14) is obtained in the limit. In view of this “Kac
bridge” between models with local strong interactions that have nonzerolocal
correlations whose strength increases with J and the Curie-Weiss models with
long range weak interactions that give the same equation (14) for the long run
value of (®;) we shall speak of an increase in J as an increase of local
correlation of characteristics. Kac (1968) develops a series of expansions in Y
for solutions for his general model where the Curie-Weiss theory appears as
the lowest order of accuracy but accurate enough to display the phase
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transition behavior that appears in the general model. In our view the
analytical advantage of the Curie-Weiss structure and the Kac Bridge justifies
the abuse of language we use in associating an increase in J with an increase
in correlations across characteristics.

Turn now to the general case. We shall use an identity exploited by Kac
(1968). In the applications below, inducing dynamics will give us flexible
functional forms of dynamics on volume and stock returns, which will be one
of our key applications. Another key application will be dynamics of K macro
aggregates.

General Case: K > |

Rewrite (1) as follows
Pr{w) = exp[GIP\(w) /Z, G=(1/2)Y, Y Myl ((NIM,+ DM, (16)
PutN;=mN, m 2, (Nn) "2 = 2lyn| ">/ N=J,; / N, J,, constant,
G(@)= (172, D (M /N (M /N D) + Y M, (17)
Following Kac (1968, p. 254) use the following identity,
exp{(1/2)Y, > EA,& ) = @ny K/ 2det(A))™ !/ 2Jexpl D & x, ~ X'A~x] / 2dx, (18)

where 2 isfrom 1 to K, bold face letters are vectors and matrices, _[ is over the
K-vectorx, Ais K x K.
PutA =J, C=(2n) ¥/2[det(A)]" /2 and write

Pr(o) = CM[ [n)! 2fexplY My (h +2,) -
~(N/DY, Y Bymngzda/ Z
G=y/ N2 (19)

after making a change of variable from y to z, letting the product H run from
1,2,...,K, and putting B= Jh Application of Kac’s identity and summing
term by term allows one to show that z is given by

Z= CN[Hnj]‘ 2 ([IMh, + 2k expl- (1 /DY S Byl Vdz,  (20)
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We are now in a position to compute the limiting values, as N - e, of
moments. Consider

(M/N,) for set A, @1
Use (19) and (20) to obtain
(M;/N;) =
= Jiath,+ ) /M, + N IM+ 2 expl=Y, T Bymnziz ) /2)%dz /2 (22)

Here A(y) = JEexp[EyldF(E) = M(y). Use Laplace’s method (Ellis, 1985) to
observe that, as N — e, all probability mass piles onto z* where z* maximizes

N ndogMihy+2)~ (1/2)Y, 3 By, (23)

The first order necessary conditions for a maximum of (23) are given by

M/ M =Y Byn 2, M= M(h, +2,). (24)

Put akEM’k/Mk, a=(a),....ay), c,=mz, c={(c;,...,cy) and rewrite (24)
thus,

a=Bc, Ja=c. {25)

Recall that J,; = [n,n)] /21, , s0 (25) becomes
Nmnd VM S M =ng, , 1=1,2, . K. (26)
k
Note that in the diagonal case I;,; =0 for £ not equal to /, and that n; cancels
from both sides of (26). In general the relative size [, /n)]' /2 plays a key role
in transmitting interactions across different sets of entities as can be seen by
dividing both sides of (26) by n,.
We have

my=M,/Ny=> (0,)= M (b, +20) /M, +20), i € A, 27)

Similar arguments yield, replacing M, = Zmi by Zg(mi) for any function g,

T 2(@)/ N, = [e(B)expl(h, + LDEMFE) / M+ 20), i€ A, (28)
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These formulae for computation of limiting moments can be used to extend
the applications given in the text.

Maximum Entropy and other Rationales

The probability structures put forth in Section 1 of our paper may appear
arbitrary and chosen merely for convenience. There is some justification for
the particular parameterization of probability structure that we chose to use.
We give several arguments below. First we deal with the idea of modelling
error-prone or “noise” traders. Then we show how such probabilities arise
naturally from discrete choice theory.

A natural way to model the notion of “noisy beliefs” is to choose the
most random probability measure subject to constraints. For example
the most random probability measure on Q = (- 1, 1}"is the uniform measure
that assigns P(w)=1/2" to each o € Q. Explanation of this idea requires a
digression into the subject of maximum entropy measures.

Maximum Entropy Measures

To be precise consider the following optimization problem

Maximize [~ Y p(@)In(p(@))], 29)
subject to,

2 P(@G@)=G, X p@)=1, (30)

where In(x) denotes the natural logarithm of x, Yisoveralloe Q,and G
denotes a fixed level of group sentiment. Let A, , A, be the Lagrange multi-
pliers associated with the two constraints in (29) by order of appearance. Then
itis easy to show by differentiating the Lagrangian

L= - p@)np@)] +1,(G - Y, p@)G@) + A1 = 3. p(@),  (31)
that

p(w) = exp[BG(w)]/Z; Z= 3 exp[BG(V)], B=-A,. (32)

ve Q
Using the concavity of the function H(x) =—In(x}x on (0, ) and the
linearity of the two constraints in p, it is straightforward, using standard
nonlinear programming theory, to show that B approaches + co (- ) as G
approaches G* (G,) where G* (G,) denote the maximum (minimum) values
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of G. Note that p(m) collapses to the most uniform measure over £, i.e., the
1ID process over &, when B=0. Denote this measure by © and note that
n(w)=1/2", for all we Q, and that (32) may be equivalently written by
multiplying the numerator by m(w) and each term of the denominator by
n(v). This is useful in Ellis’s (1985) development of the limit theory which we
follow. Also note that Ellis’s B is absorbed in our J, A. To put it another way,
Ellis’s BJ , Bh correspond to our J , &.

Rationale for Entropy Maximization

At this point we must further digress to discuss the rationale for entropy
maximization. The motivation of entropy maximization stems from my own
attempttoreformulate the “Harsanyi” doctrine or “common priors” assump-
tion in such a way that some diversity of beliefs is allowed at a cost of a
minimal number of free parameters.

The Harsanyi doctrine is controversial. Witness the labor expended
defending it by Aumann against the flat statement by Kreps: “This assump-
tion has very substantial implications for exchange among agents; we will
encounter some of these later in the book. I leave it to others to defend this
assumption —see, for example Aumann (1987, section 5)~ as I cannot do so.
But the reader should be alerted to this modeling assumption, which plays
an important role in parts of modern microeconomic theory; it is called both
the common prior assumption and the Harsanyi doctrine.” (1990, p. 111). Kurz
(1990), for example, makes a strong argument that diversity of beliefs will
remain in the face of learning in a context where one would expect belief
convergence.

In view of this conflict in the profession we propose a compromise.
Entropy maximization subject to constraints is given a very spirited defense
as a useful way to do prediction in statistical mechanics by E. T. Jaynes (1983)
and there may be a useful analogy in economics as discussed by Zellner
(1991). It may possibly be viewed as a way to allow some diversity in beliefs
without emptying the theory of predictive content and in Bayesian literature
as a way of giving some “objectivity” to “subjective” beliefs. I use it here to
motivate an anaytically tractable model of interactive group formation of
beliefs or sentiment. That is to say the group is assumed to have the most
random set of group beliefs subject to a given mean level G. This restriction
parsimoniously parameterizes the beliefs by three parameters (8, J, ) where
B is fixed by G.

A very innovative use of entropy and the methodology of Gibbsian
statistical mechanics is in Stutzer’s work (cf. Stutzer (1992} and references to
his earlier papers). He uses this methodology to put forth a concept of
financial entropy which he relates to the degree of risk adjustment required
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of any arbitrage-free asset pricing theory to explain the risk premia of a given
set of assets. He applies his theory to data on the stock and bond markets and
produces evidence consistent with a secular decline in the influence of risk
aversion in the stock and bond markets over the past 65 years. We urge the
reader to study Stutzer’s work.

If the reader does not care for the maximum entropy argument the same
probabilities may be derived, as in Section 4.1, by viewing the group of
interactive noise traders as solving the “social discrete stochastic choice
problem”

Maximize G(w) + pe(w), B=pu! (33)

we Q

where {e(w)} is IID extreme value distributed. It is pointed out in Manski and
McFadden (1980) that Prob{ choose w} is exactly equal to the logit probability
(32). Since the probabilities are logit we have access to the extensive
econometric literature on estimation of logit systems. Indeed this is a main
part of the motivation for the type of theory we are building. More will be
said about estimation in future work.
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