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Resumen: C a s i desde su a p a r i c i ó n , e l F i l t ro de K a l m a n ( K F ) ha 
sido ut i l izado con é x i t o en i n g e n i e r í a de control . Desa­
fortunadamente, muchos de sus principales resultados 
han sido publicados en revistas de i ngen i e r í a , con len­
guaje, n o t a c i ó n y esti lo propios de tal d i sc ip l ina . E n este 
trabajo, queremos presentar e l K F en forma atractiva 
para los economistas u t i l izando t eo r í a de la i n f o r m a c i ó n 
e inferencia bayesiana. 

Abstract: Almost since its appearance, the Ka lman Filter ( K F ) has 
been successfully used in control engineering. Unfo r ­
tunately, most of its important results have been publ i sh­
ed in engineering journals with language, notation and 
style proper of engineers. In this paper, we want to 
present the K F in an attractive way to economists by 
using information theory and Bayes ian inference. 

1. Introduction 

The Kalman Filter (KF) introduced by Kalman (1960), Kalman and Bucy 
(1961), and independently by Swerling (1959) and Stratonovich (1960), 
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has been successfully used in control engineering. Many of its numerous 
applications in engineering can be appreciated in a special volume edited 
by Sorenson(1985). 

In spite of the interest in control theory by economists, the impor­
tance of the K F in modeling economic systems has not been fully ap­
preciated. Applications of the K F in economics are rather scarce: Athans 
(1974), Burmeister and Wall (1982), Burmeister, Wall and Hamilton 
(1986), Sargent (1989), and Basar and Salmon (1989), among others. 

Some of the potential uses of the K F can be illustrated in the 
following instances: Most of the econometric models assume fixed 
coefficients becoming, in many cases, susceptible to Lucas' critique on 
econometric policy evaluation (1976). In this respect, the K F provides a 
methodology to deal with the estimation of time varying coefficients in 
regression models. 

In most of the economic models stated under a stochastic optimal 
control framework, the state variables are supposed to be observable. 
However, there are many situations in which the state variables cannot 
be directly observed, but only through indirect measurements. The main 
feature of the K F is that it still allows us to analyze dynamic economic 
systems with indirect measurements of the unobserved state variables. 

Our approach in presenting the K F uses information theory which 
has been extensively applied in economics; we mention, for instance, 
Theil, Scholes and Uribe (1965), Theil and Uribe (1965), Uribe, De 
Leeuw and Theil (1965), Cozzolino and Zahner (1973), Akaike (1981), 
Kapur (1990), and Venegas and de Alba (1992). 

We start off the recursive procedure of the K F by determining, via 
information theory, an estimator of the initial distribution when there is 
information in terms of moments (Venegas, 1992, 1990 and 1990a), and 
then we use Bayesian inference to state the updating process of the K F 
which is based on the same principle as that of the sequential learning 
mechanism used by Lucas (1973) in obtaining his model of the Phillips' 
curve. We think that under this framework the presentation is more 
attractive to economists. It is worth pointing out that our approach to 
obtain the K F is simpler than those from Ho and Lee (1964), and 
Meinhold and Singpurwalla (1983). 

We emphasize the potential use of the K F in modeling economic 
systems. We provide a Bayesian sequential method based on the K F to 
test convergence of rational expectations in the absence of sufficient 
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side conditions. Our proposal differs from that in Burmeister and Wall 
(1982) in two main respects: First, we introduce entropy maximizing 
behavior. Secondly, we state a sequential test, which may save computa­
tions when rejection occurs at early stages. 

We also discuss the K F relationship with the class of stochastic 
optimal control problems with a quadratic index of performance and 
subject to constraints in terms of state-space equations. Using this 
framework, we study a central planner problem under uncertain infla­
tion. 

The paper is organized as follows: In section 2, we introduce the 
measurement and state equations. Through section 3 we list a number 
of models in the econometric literature that can be written in terms of 
the measurement and state equations. In section 4, we present the K F 
methodology. Here, we briefly outline the maximum entropy principle 
and the Bayesian approach to statistical inference. The former wi l l 
provide an estimator of the initial distribution to start off the sequential 
procedure of the K F , and the latter wi l l update information recursively. 
In section 5, we study the connection of the K F with the generalized 
least squares methodology. Through section 6, we provide a method 
based on the K F to test convergence of rational expectations. In section 
7, we discuss the relationship of the K F with stochastic optimal control 
given by the separation theorem. In section 8, we study a central planner 
problem in an economy without capital resources and uncertain infla­
tion. In the last section, we state a set of conclusions and delimitations 
of our work. 

2. The State-space Representation 

Let Yv Y2,..., Yt be a set of indirect measurements, from a polling 
system or a sample survey of an unobserved state variable p(. The 
objective is to make inferences about B. We may think of Y and B as 

J t t t 

either scalars or vectors with dimensions which may be the same or 
different. However, in this section we focus our attention in the multi­
variate case, and in the next section we give examples of the univariate 
case. A l l vectors and matrices below are assumed to be of consistent 
dimensions. The relationship between F and B ( is specified by the 
measurement equation, sometimes also called the observation equation: 
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Y = X p t + tt, (2.1) 

where X is a matrix of known parameters, and the e is the observation 
error distributed as 7V(0, Z £ ) , with 2 £ known. Since the variance changes 
over time we have, in general, a hete'roscedastic error model. Notice that 
the main difference between the measurement equation and the conven­
tional linear model is that in the former, the coefficient B changes with 
time. 

The most popular dynamic extension of the error term in the con­
ventional linear model states that 

fy = X B + e, 

j e ^ Z e ^ + ' r , , , ( Z 2 ) 

where Z is a matrix of known parameters, and r)( is distributed as 
N ( 0 , Z ). Notice that B and Z are time invariant. The K F wi l l not be 
concerned with the dynamics of the error term, e(, as in (2.2), but instead 
with the dynamics of the state variable, B (, in (2.1), this being the other 
essential difference from the conventional'linear model. We suppose that 
the dynamic behavior of the state variable B is driven by a first order 
autoregressive process, that is, 

P, = ^ _ , + Z A - i + V i -

where the drift u\,_ , is a vector of exogenous or predetermined variables, 
Z is a matrix of known parameters and n ~ A/(0,1 ) with £ known. Or 
even more generally, 

P r ^ - i + ^ - i + V n + V ! - (2-3) 

where L is a known matrix that relates the control inputs, u(_v to 8f. 
Equations (2.1) and (2.3) are known in the literature as the state-space 
representation of the dynamics of B . Throughout the paper, we shall 
assume that BQ, e ; and r| r are independent random vectors, and for the 
time being L =0; further consideration of the control variable will be 
made in section 7. 

We might state nonlinear versions of (2.1) and (2.3), but this would 
not make any essential differences in the analysis. 
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3. Some Econometric Models that Accept a State-space 
Representation 

In this section we list some of the models in the econometric literature 
that can be written in terms of the measurement and state equations. 
Some of them contain univariate error terms. Their multivariate exten­
sions are straightforward. 

The first model we mention is the random coefficient model from 
Hildreth and Houck (1968), which consists of the following two equa­
tions: 

where the r|/s are independent and identically distributed random 
variables N ( 0 , a 2 ) (cf. Swamy and Mehta, 1975). In this case, 8 is called 
the nonstochastic mean response coefficient. 

The model studied in Harvey and Phillips (1982) is an extension of 
the previous one with the same measurement equation, but the state 
equation is instead 

p / -P = p(p ?_ 1-P)+ri f, 

where Ipl < 1, and the r) 's are independent and identically distributed 
random variables iV(0, ( A Note that when p = 0 the model reduces to 
the Hildreth-Houck model. 

We also mention the Cooley and Prescott's (1973) model 

t t t 

P,' = P f - i + v , 

where E ^ v J = 0 for all t, s. The quantity 6f is called the permanent 
component' of the parameter. Here, the parameter variation is of two 
types, permanent and transitory, the former allowing some persistent drift 
in the parameter values. 
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Finally, we point out that the ARMA(p, q ) processes 

(1 - <PjL - cp2L2 - . . . - v ? L r ) Y t = (1 + 9jL + 0 2 L 2 + . . . +0 f_ / / " ')ef 

where r = max {p, q + 1}, q>., = 0 for i > p , 0. = 0 for j > q and the e/s are 
independent Gaussian variables with mean^zero and variance a 2 , can be 
also rewritten in terms of measurement and state equations by setting 
X = [1 ,0 , , . . . , 0 , f , B =[B, , B , , . . . , B f ( the s u p e r i n d e x T 
denotes the usuai vector or matrix transposing operation), 

Z = / - 1 and n = ' , 

where = [q>r q> 2 , . . . , q>r ^ I is the identity matrix of order r- 1 
and O is a column vector of r - 1 zeros (cf. Hamilton, 1994). 

4. Kalman Filtering 

In order to present the K F in a simple way, we first outline the maximum 
entropy principle and the Bayesian approach to statistical inference. The 
former will provide an estimator for the initial prior distribution to start 
off the sequential procedure of the KF, and the latter wil l provide the 
recursive updating of information of the KF. 

The principle of maximum entropy (Jaynes, 1957) provides a general 
method of inference about an unknown density, p(P0) when there is 
information about p(pQ) in terms of moments. The principle states that 
among all compatible distributions with the available information, we 
should choose as estimate, n(B 0 ) , for p(B Q), the one with the greatest 
entropy}" log(jt(B0))7i(B0)i/p0. A 

Suppble that at time i = 0 the available information is given by p Q 

and l 0 , the mean and variance of B Q , respectively. We may then use the 
principle of maximum entropy to find an estimate, 7t(B0) of the prior 
distribution of PQ that takes into account the given information by 
solving the problem: 

Maximize \ log(7r.(p0))Ji(p0)<ip0, 
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subject to: -

¡ 7 * 8 ^ = 1 , 

f j V W o = P0. 

The first order condition of the above calculus of variations problem of 
maximum entropy is given by 

where U s a scalar, A is a vector and L is a symmetric matrix. By 
substituting (4.1) in the constraints, we can show that B Q ~ W(BQ, \ ) (see 
Venegas, 1990). 

Suppose now that, at time t, we wish to make inferences about the 
conditional state variable 0 = B I / , where I = {Y,,Y.,... ,Y _ , } . The 
Bayesian approach is to assume that there exists a prior density 71(0,) 
describing initial information. Once a prior has been prescribed, the 
information provided by the measurement 7, with density p(Yt I 0r), is 
used to modify the initial knowledge, as expressed by 7C(0f), via Bayes' 
theorem to obtain a posterior distribution of 0 ;, namely 

The normalized posterior distribution is then used to make inferences 
about 0, 

We are now in a position to state the recursive updating procedure 
of the K F . In the rest of the paper, the drift u,, introduced in section 2, 
wi l l be left out since it makes no difference in the succeeding analysis. 

At time A = the maximum entropy estimator for the initial dis­
tribution, i V ( B 0 , E 0 ) , describes the initial Aknowledge of the system. 
Proceeding inductively, at time t,$t_l and Z ( _ l become available infor­
mation and therefore prior knowledge at timé t is represented by 

TT(B0) oc exp{À. + A R B 0 + (B 0 - p 0 ) r L(B 0 - P0)}, (4.1) 

p ( Q t I Y) oc p(Yt I Q ) n ( Q ) . (4.2) 

A 

e = ^ t \ I t ~ N ( Z ^ _ v M t ) , (4.3) 

where 
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The sampling model (or likelihood function) is determined by 

7 19 ~ i V t X ^ S ) . (4.5) 

The posterior distribution is then obtained by substituting both (4.3) 
and (4.5) in (4.2), so 

p(G I Y) - exp{- h { X B ( ~ Y)T2T '(X B - Y) 

+ ( B i - z p ^ 1 ) r A r 1 ( B i - z p ; _ 1 ) ] } . 

Noting that /?(0) is a natural conjugate prior, we may complete the 
squares, which is a standard technique in Bayesian inference, to get 

VY,~ N & L , + - X

t

Z L , ) • M

t - K t X M t ] , 

where 

K = M X T ( 1 + X M X T y \ (4.6) 
i 

This, of course, means that 

P, = Z ( P f l + K t ( Y i - X Z t ^ > t j), 

L = M - K X M . 
t t t t t 

We then proceed with the next iteration. Equations (4.4), (4.6), and 
(4.7) are known in the literature as the KF. We warn the reader not to 
confuse the K F with the state-space representation given in (2.1) and 
(2.3). 

By means of various vector-matrix manipulations, the matrix Kf in 
(4.6) can be put into a number of equivalent forms. A n alternative 
formulation, that we shall use in the next section, is given by 

K , = ( X T I T l X + M ~ 1 ) ~ 1 X T I T \ (4.8) 
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To verify (4.8), we simply premultiply the right-hand side of (4.6) 
by a suitable choice of "identity" matrix as follows: 

K = ( x T i r lx + M ~ l r \ x T i r "x + M ~ ' ) M X t ( 1 + X M x T r 1 

i t i 

= ( X r I " 1 X + M " ' ) " 1 X r Z - 1 ( S + X M X T ) ( L + X M X T r 1 
v t e t t ' f e e / / t l x e t t t' t ! J t 

= { X T Z ^ X + M ; 1 ) - l x ^ - \ 

5. Relationship to Generalized Least Squares 

In this section, we briefly discuss the K F relationship with the general­
ized least squares methodology for both the classical and Bayesian 
approaches. We suppose that Bj = B 2 = . . . = B ;, Zj = /, and X does not 
appear. By simple computations involving the K F with (4.8), we find 

P j ^ + tf^-xjy (5.1) 

= p0 + >xl + X - 1 ) - ^ ' ( Y^xX) 
i 1 

= ( x [ i ; % +1 - ' r 1 [(x[z; % + z 0 >)p0 + x [ x ; \ Y x - x $ 0 ) ] 
i l i 

= (x[s - ^ + s0- ' r ' (S - >p0+x[z - 'y,), 

which is the posterior estimate for pj when initial information from a 
natural conjugate prior is available. Notice that when I " 1 vanishes (i.e., 
when the prior is not informative), the estimate is 

p ^ ^ z - ^ r ' x y s - ' y , , (5.2) 

which is the generalized least squares estimate of P r 

6. On the Convergence of Rational Expectations 

The postulate of the convergence of rationally formed expectations 
carries with it important economic consequences. In models without 
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sufficient side conditions, the postulate is needed to determine a unique 
equilibrium at each instant (Muth's model of inventory speculation, 
1961, which shows convergence is a very special case of rational expec­
tations models). 

In this section, we provide a simple Bayesian sequential method 
based on the K F to test the convergence of rational expectations by 
treating the integration constant as an unobserved variable. Our 
proposal differs from that in Burmeister and Wall (1982) in two main 
respects: First, we introduce entropy maximizing behavior. Secondly, 
we state a sequential test, which may save computations when rejection 
occurs at early stages. 

Consider the following simple macroeconomic model consisting of 
a demand for real money balances as a function of the expected rate 
of inflation (cf. Cagan's portfolio balance schedule, 1956): 

m t - p = * E t p t + l - p ) + Zyf y<0, 5>0, (6.1) 

and a stochastic money supply given by 

m = p m _ i + v ( , 0<p < 1, (6.2) 

where m is the natural logarithm of the nominal stock of money at time 
t, p t is the natural logarithm of the price level at t, yf is the natural 
logarithm of income at t, E t p t + 1 is the conditional expectation o f p t + l 

formed at t ime t and based upon a l l avai lable informat ion 
/ = (y, 8, p, mt, mt_v . .. \ p t , p t V ...}, y is a constant related to the 
elasticity of the demand for real balances with respect to the expected 
inflation, 8 is a constant related to the elasticity of the demand for real 
money balances with respect to income, and the shocks, v,, are inde­
pendent normal disturbances with mean zero, variance o 2 , and 
E{ \ t I / } = 0. We make the extreme classical full-employment assump­
tion y = y , a constant. Macroeconomic equilibrium leads to 

( l - B - ^ p ^ y - p E ^ ) , 

where X = 1 - y ~ 1 > 1 and the operator B is defined by 

B - l E t p i + = E t p t + s 
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for all t , s , j > 0 . The forward solution to this first order difference 
equation is 

p , = - - i ' Z x ~ J E

!

m

t + j - i - ? , y + P r < 6 - 3 ) 
y j = o 

where B ; is any stochastic process satisfying 

£{B f + , l f ; }=A.B ( (6.4) 

with f = / u (B f, B, }. Notice that in such a case 

We may also write Bf as B ( = Vxt, where * is any martingale, that is, x is 
any stochastic process that satisfies 

E { x , \ t } = x 

Therefore, there are infinitely many divergent forward rational ex­
pectations solutions. Convergence will require B, = 0 for all t. 

Furthermore, from successive substitution of (6.2) we can show 
that £ m . , = ojm, j = 0 , 1 , . . . , and therefore (6.3) becomes 

I ! + J — 1 1 / — 1 

l - y ( l - p ) 
§ j + B, (6.5) 

There are many stochastic processes (bubbles) consistent with (6.4), for 
instance, 

P . — 
t + l 

with probi?, 0 < q < l , 

or 

0 with prob 1 - q, 

(6.6) 

where the r|/s are independent Gaussian variables with mean zero and 
variance a 2 . 

n 
To be m a position to apply the K F to test convergence, we assume 

that the B/s are unobserved variables satisfying (6.6). We also as-
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sume that there is partial information in terms of the two first moments 
on the initial B Q , say, E [ $ Q ) = $ Q and £{ B2,} = Ô 2 + £ 2 . If individuals 
behave as entropy maximizers, then the prior distribution of BQ com­
patible with the available distribution is N ( $ Q , a 2 ) . The random vari­
ables B 0 , e, and r| (, as usual, are supposed to be independent. Hence, 
under normally distributed errors, the rational expectations system is 
given by 

B = IP, , + TI 

mi = pmt] +v (. 

Pt = -
ôy + B (, 

1 —7(1 - P) 

or equivalently, in terms of the transition and measurement equations, 

fP, = *P,- ,+V>. 

where 

p + 8 y - = B +e. 
' 1 - Y(l - P) ' ' 

e ~ N ( 0 , o ¡ ) , and ü¡ = 

f 

1 -7(1 - p ) 

To test the common assumption of convergence with available data on 
p t , mt, y, 5, p and y , and under normally distributed errors we refer to the 
K F , equations (4.4), (4.6) and (4.7) with univariate error terms. In such a 
case, the posterior distribution of B ; I f , is iV(B;, a 2 ) , where 

Bf = e ^ B ; _ 1 + ( i - e r ) 

Ô H i - e ? ) a 2 , 

pmt 

1 -7(1 - p ) 
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The null hypothesis to be tested is H Q : B ; = 0 for all t > 1. Proceed­
ing recursively and starting off at t = 1, we reject H Q if a t appears for 
which B i = 0 does not lie within a highest posterior density interval with 
a given uniform significance level a, namely, 

ft A ft A 

where, as usual, P { Z > za/2) = a I 2 and Z ~ N ( 0 , 1). 

7. Relationship with Stochastic Optimal Control 

Stochastic optimal control has been very attractive to economists. The 
literature on its application to economics is abundant. However, the 
relationship of the K F with stochastic optimal control, given by the 
separation theorem, has not been fully appreciated. Among the very few 
papers that have exploited the separation theorem, we mention Sargent 
(1989) and Basar and Salmon (1989). 

In this section we briefly state the separation theorem, and in the 
rext section we apply it to a central planner problem with uncertain 
nflation. 

Let us extend our considerations to the dynamic system 

[ n r r -1 i t - ] v - 1 ' 

vith finite horizon t = l , . . . , N . When the control term L / H f _ , is added, 
t is natural to ask that the composite system of control and estimation be 
Dintly optimal in some well-defined sense. We shall be particularly 
oncerned with the case when the dynamic linear system has quadratic 
erformance indices. Thus, the optimal control wi l l be determined as a 
olution to 

Minimize E 
!= 1 

(7.2) 
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subject to: 

Yt = X p t + tt, 

(u„,..., u ) e U, 

where U is a specified set, F and are symmetric matrices, P is 
semipositive-definite, ¡2, is positive-definite, and (30 and the noise terms 
e and ri are, as before, assumed to be independent. 

The above problem without the measurement constraint, 
7 = X p t + e, is known in the stochastic optimal control literature as the 
discrete-time stochastic linear optimal regulator problem or the dis­
crete-time LQG (Linear-Quadratic-Gaussian) problem (see Venegas, 
1992b and 1993). 

By using stochastic dynamic programming (Bellman's recursive 
equations, 1957) to characterize the optimal control of problem (7.2), 
we can show that a necessary condition for ut to be a minimum is that 

u = 4 , , (7.3) 

where the guidance or control matrix A satisfies 

' A = - [ L ] + ] W t + l L t + ] + Q f % + i W i + l X i + v 

<W = Z7" .W ,Z ^ , + Zj" , W ,L ,A, + P„ 
! t + i / + 1 f + 1 f + 1 / + 1 / + 1 t t 

P N = W N ' 

and è satisfies the K F , that is, 

M=ZÌ ,Zf + E 

T v T , 
K = M X ' ( L + X M X ' t ) 
A 

£ = M - K X M , t t i f f ' 
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The above result is known in the literature as the separation 
theorem since A f is obtained as solution to the deterministic problem 
(see, for instance, Meditch, 1969). 

8. A Central Planner Problem under Uncertain Inflation 

In this section we use the separation theorem in studying a central planner 
problem under uncertain inflation. We consider a one-good economy 
without capital resources. 

SA. P r i v a t e sector 

We suppose there is a large number of identical consumers, each of whom 
makes consumption decisions in T- 1 periods (t = 0, 1,. . . , T- 1), and 
has the following budget constraint: 

w t _ ] M i = w i _ ] M i _ l + g t _ x + y t _ t - c f _ v t = l , . . . , T , (8.1) 

M Q > 0 given, M r > 0 , 

where M is the stock of currency owned at the beginning of period t, w 
is the value of the currency measured in goods at t (the reciprocal of the 
price level), g t stands for government lump-sum transfers at t, yf is real 
income at t, and c is consumption at t. Equation (8.1) can be rewritten, 
in terms of the inflation rate 

w . 
i - 1 1 

TC = l 
t 

as 

(l + n ) m t = (1 + u t _ A m t _ , + g t _ , + V , - c _ , - n _ xmt_(8.2) 

t = \ , . . . , T , 
where m = w M represents real money balances and the last term on the 
ight-hand side stands for depreciation of real money balances from 
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inflation. Notice, however that the above budget constraint requires 
additional information on w_, and wr 

Private agents have no knowledge of w wQ,.. . , w r and there­
fore, they do not know the inflation rate, %. However, we assume 
they have partial information on the distribution of w_v in terms of 
the first two moments, say, E { w ^ { } = w_, and 

E { w 2

] } = a 2 _ l + + w2

y 

Assuming that individuals behave as entropy maximizers, then the 
prior distribution for w_, that is compatible with the available informa­
tion is N(w_ r a 2 _ ^.Therefore, 

w_ , M 0 = (1 + 7t0)m0 ~ N(w_ , M 0 , a 2 AM1). 

Of course, we assume that w_, > 0. 
Suppose also that private agents are capable of making indirect 

measurements, S , of n , according to the rule 

( \ + K ) m = ( l + K ) m i + £, t = \ , . . . , T , (8.3) 

where, as in Tabellini (1986), m i s a constant target chosen by the 
monetary authority at t = 1. We assume that the observation errors, e, 
are independent normal random variables with mean zero, variance 
G^and£{w_,e ( } =0. 

The représentât ive individual's objective is to maximize, at the 
present (i = 0), his total expected utility of consumption over T- 1 
periods, namely, 

T 

E \ ^ u { c t _ ) + V { m T ) \ . (8.4) 

Notice that, for simplicity, no discount factor has been included in the 
overall utility, and money services provide no utility. The utility function 
is expressed as the quadratic function 

u { c ) — Q . c — c . t — 0,. . . , T" — 1. (8.5) 
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Here, a { , a 2 > 0 , and the ratio a x I a 2 determines the level of satiation. 
Notice that «(0) = u ( 2 a x I a j = 0, u ( c ) > 0 for 0 < c < 2a, / a 2 , u { c ) < 0 
for c > 2 a x l a v «'(c) > 0 for Q < c < a x l a 2 , and « ' ( c ) < 0 for 
ct > a x I a 2 . The salvage value is chosen as 

V ( m T ) = - { a 2 1 2)[(1 + K T ) m T f . 

We assume that the real income of the individual randomly fluc­
tuates around his income satiation level following 

y = — + T V \ ~ ^(O.oi). t = Q,...,T-\, (8.6) 

where the -q/s are independent endowment shocks satisfying 
£{e s r | ( i =0 for'all t, s, and E{ w_ , r i f l = 0. 

8.2. P u b l i c sector 

In order to keep monetary experiments as separate as possible from the 
effect of other government activities, we suppose that at each time 
t = 0 , 1 , . . . , T - 1, the government consumes nothing, has no debt and 
is committed to provide a lump-sum subsidy to compensate for deprecia­
tion of real money balances whatever the rate of inflation is. Thus, the 
government budget constraint is given by (cf. Calvo, 1991) 

g = n m f t = 0,...,T-\. (8.7) 

8.3. The c o m m a n d o p t i m u m 

After incorporating the government behavior, (8.7), and the real income 
fluctuations, (8.4), into the representative individual's budget constraint, 
(8.2), we get the consolidated constraint for the economy 

( 1 + 7 C > =(1+TC , ) m , - (c , - — ) + r| t = \ , . . . , T . (8.8) 
r , r - 1 « - l , - 1 ^ r - , 

Let us denote B ; = (1 + TC ()w, ^ 0 = w_,Af 0 and o2

0 = o l x M 2 . Notice 
that n is unobserved, and therefore B is unobserved. The social plan¬
ning problem is thus stated as 
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T í 

Minimize E i £ c 

subject to: 

'2 

(l+jc f)m = ß( + ef, r=l, . . . ,r, (8.9) 

er ~ N ( 0 , G2

£), r \ t ~ N ( 0 , a 2 ) , with BQ, e( and ^ independent. 

Constraints (8.9) determine the state-space representation of the 
dynamics of B ( with control c( | . It is worthwhile to note that the 
constraints (8.9) collapse into5;~=c f_,, wherey ( , =y ; , H , 
^ = \ - m , %~ N i n m , ^ ) for t = l , . . . , T - l , and c ^ p ^ - m . A c ­
cording to the separation theorem stated in (7.3), the optimal planned 
consumption path, {c,}^1, satisfies 

where the estimates B are computed through the K F , equations (4.4), 

ß, = efp\_, +(1-6X1+71^, r = l , . . . , r - l , (8.11) 

(8.10) 

A 

(4.6) and (4.7) with univariate error terms, as 

a 
e 

E t - 1 T| 

r> = ( l - 9 ( ) a 2 , ,= ! , . . . , 7 - 1 . 

j , t = \ , . . . , T - \ , (8.12) 

(8.13) 

Moreover, the optimal salvage value is reached at 

ß r = er̂ r_, + (1 - e r)(l + nT)m > 0. 

From above, we have the following results for the optimal consumption 
path. 



THE K A L M A N FILTER 141 

PROPOSITION 8.1. I n o r d e r t o o v e r t a k e u n c e r t a i n i n f l a t i o n t h e c e n t r a l l y 
p l a n n e d c o n s u m p t i o n w i l l exceed t h e s a t i s f a c t i o n l e v e l a t a l l t i m e s . 

PROOR Since w_l >0 and M 0 > 0 , then P 0 >0. Therefore, from the 
recursive property of % stated in (8.11) and since 6, > 0 for all t, we obtain 
Pr> 0 for all t. Thus, equation (8.10) implies 

c - — = —1—p\>o, r=o, . . . ,r- i . 
' a 2 T - t + l y ' 

C o m p a r a t i v e s t a t i c s 

We are now concerned with the effects on optimal consumption, c, when 
the parameters of the initial distribution are changed. 

PROPOSITION8.2. U n d e r u n c e r t a i n i n f l a t i o n we have t h e f o l l o w i n g effects 
o n t h e c e n t r a l l y p l a n n e d c o n s u m p t i o n : 

( i ) A n i n c r e a s e i n t h e i n i t i a l mean v a l u e of t h e c u r r e n c y , w w i l l 
i n c r e a s e t h e c e n t r a l l y p l a n n e d c o n s u m p t i o n a t a l l t i m e s . 

(li) The effect o n c o n s u m p t i o n due t o a c h a n g e i n t h e i n i t i a l 
v a r i a n c e , o 2 i s u n d e t e r m i n e d a t a l l t i m e s . 

PROOF (i) Observe first that from (8.10) and (8.11) 

1 dc 
-r=„ T T T 9 , , + , > 0 ' f = o , . . . , r - i , 
-.ft T-t + 1 ± L ' ~ ' + x 

a p 0 J = I so 
- ,A - . A dc dc 

- ^ - = ^ M 0 > O , f = o , . . . , r - i . 

(ii) Notice that d c Q I d o 2 , = 0 and 
dc , 

i = i , . . . , r - i , 
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where A, = B, _, - (1 + n ) m and 5 = 30 / 3c2,. We readily see that 

B = 
30 d a •2 A .2 (̂ 

i - 1 " ~ r - 2 30. , 3a: 

*>T-2 « U , 

^30^ 

v V 
<o, r= i r - 1 

(+) (+) (-) 

since, from (8.12) and (8.13), we get 

30 d'à 
<0, and — — <0. 

/ - 1 

A , However, the A,'s may be of either sign, and therefore 3c / 3a2, in (8.14), 
cannot be signed. Hence, 

3c, d c t , 
-K— = - K - M ¿ , í = o r - 1 , 
3c_ Sap 

has ambiguous sign at all times. 
In this case, 

3c dc A 3c, A 

Ü 7 = ^ " - 1 + # 2 M ° ° - ' ' í = 0 - - 7 ' - 1 - ( 8 - 1 5 ) 

d M o 3B0

 dao 
On the right-hand side of (8.15) we have two effects: The mean 

effect 

V 

3Ê, 

3M 0 

which, from (/), is definitely positive, and the v a r i a n c e effect 

a £ i 3? 

0 ""o 3M^ V ™ = c # 2 M ° ° ! l 

which, from (n), is ambiguous. This concludes the proof of Proposition 
8.2. 
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Some comments are in order: Proposition 8.1 and ( i ) in Proposition 
8.2 seem to be very intuitive. However, in Proposition 8.2, at any time 
during the planning horizon, the variance effect, in ( i i ) , may be of either 
sign, and the overall impact, in ( H i ) , w i l l depend on which effect 
dominates. If the mean effect is large enough, the total change in con­
sumption could be positive. 

9. Summary and Conclusions 

We have presented the K F in a way that might be attractive to economists 
by using information theory and Bayesian inference. The recursive 
updating of the K F was developed as closely as possible to that of the 
sequential learning mechanism used by Lucas (1973). We have discussed 
the relationship of the K F with some models in the econometric litera­
ture, including the generalized least squares, under both the classical and 
the Bayesian frameworks. We emphasized, throughout the paper, the 
potential use of the K F in modeling economic systems. We provided a 
Bayesian sequential test on the convergence of rational expectations, and 
studied a central planner problem under uncertain inflation. We are aware 
that more work has to be done on possible extensions, including the 
nonnormal state-space model with correlated noises, to get more results 
for the proposed sequential test and for the central planner problem. 
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