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Resumen: E n la teoría del equilibrio general existe una importante 
cantidad de trabajos destinados a encontrar condiciones 
que garanticen la unicidad del equilibrio walrasiano. L a 
gran mayoría de ellos parte de la función exceso de 
demanda e impone condiciones para la existencia de un 
único cero para esta función, esto es, un único precio de 
equilibrio. Pero este procedimiento es muy restrictivo 
cuando los espacios de consumo dejan de ser subconjun-
tos de espacios de dimensión finita, donde la existencia 
de la función demanda no surge necesariamente como 
resultado de un proceso de maximización. Este trabajo 
en su primera parte, trata precisamente de uno de estos 
casos, y en su segunda parte generaliza a economías con 
infinitos bienes la condición de Mitjushim-Polterovich. 

Abstract: For economies with infinitely many goods, with two 
different approaches we obtain sufficient conditions for 
uniqueness of competitive equilibrium. In the second 
approach we prove that the Mitjushim-Polterovich con­
dition is a sufficient condition for uniqueness of equi­
librium when the consumption space is a positive cone 
included in a Banach space. We do not suppose 
separability of the utility function. 

Introduction 

C o n d i t i o n s for uniqueness of e q u i l i b r i u m on economies w i t h f in i te 

d i m e n s i o n a l c o n s u m p t i o n spaces are w e l l k n o w n , w h i l e uniqueness 

* I wish to thank Alois io Araujo, Paulo K. Monteiro and Ricardo Marchesini for 
useful comments and suggestions. 
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result in economies with infinite dimensional consumption spaces are 
scare. 

Dana (1993) was the first one to obtain an uniqueness result in 
infinite dimensional consumption spaces. She considers the case of a 
pure exchange economy where the agent's consumption space is L£(n) 
and agents have additively separable utilities. 

In the first approach, from the excess utility function we obtain an 
uniqueness result of competitive equilibrium when the consumption 
space is a measurable function space and the utility functions are 
separable (we do not assume the existence of demand function). Recall 
that when the consumption spaces are infinite dimensional vector 
spaces, the existence of demand function is not a necessary conse­
quence of a maximization process. While this is not a serious obstacle 
for the study of existence of equilibrium, it is a serious one for the 
knowledge of the topological properties of the equilibrium set. 

In our first approach we show that the excess utility function is a 
powerful tool for knowing the topological structure of the equilibrium 
set for the infinite dimensional case. Using the excess utility function 
we prove that economies with separable utilities and allocations defined 
on a probability space (the set of states can be infinite; is in this sense in 
that the paper considers an infinite number of goods) have local unique­
ness, an odd number of equilibria, and we obtain sufficient conditions 
for global uniqueness. 

Invoking the Pareto optimality of Walrasian equilibrium, we obtain 
a one to one correspondence between the solutions of the equation 
e(K) = 0, and the equilibrium price, where e is the excess utility func­
tion. In our case, price is a measurable fuction in a probability space. In 
this way an infinite dimensional problem is reduced to a finite dimen­
sional one. 

In the second approach we generalize to the infinite dimensional 
case the Mitjushim-Polterovich condition. In this approach we assume 
that the excess utility function exists and we prove that the Mitjushim-
Polterovich condition is a sufficient condition for uniqueness of the 
equilibrium in the infinite dimensional case. 

The outline of the paper is the following: 
We consider a pure exchange economy with consumption spaces 

that are a finite Cartesian product of measurable functions. Utility func­
tions are additively separable (see section 1). 
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The properties of the excess utility function (see section 2) allow us 
to apply degree theory to the considered economies. We prove that the 
cardinality of the equilibrium set for these economies is odd and we 
obtain sufficient conditions for uniqueness of equilibrium to hold. 

In section 3, by means of the excess utility function, we transform 
an infinite dimensional optimization problem in a finite dimensional 
one, obtaining a sufficient condition for uniqueness of equilibrium. 

In section 4 we illustrate the developed theory with some examples. 
In section 5 the proofs of theorems are given. 
Finally, assuming that the excess demand function exists we prove 

that the Mitjushim-Polterovich condition can be applied for distributive 
economies with consumption spaces in a positive cone included in 
Banach spaces. Agents need not have additively separable utilities. 

1. The Model 

Let us consider a pure exchange economy with n agents and / goods at 
each state of the nature. The set of states is a measure space: (Q, A , v). 

We assume that each agent has the same consumption space, 
M = n ' _ . M . where M . is the space of all positive measurable functions 
defined on { t l , A , v). ' 

Let R1^ = {x e Rl with all components positive}. 
Following Mas-Colell (1991), we consider the space A of the C2 

utility functions on R1^, strictly monotone, differentiably strictly con­
cave and proper. 

DEFINITION l . A C 2 u t i l i t y f u n c t i o n u i s differentiably s t r i c t l y convex, if i t 
i s s t r i c t l y convex a n d every p o i n t i s r e g u l a r ; t h a t i s t h e G a u s s i a n c u r v a ­
t u r e , Cx of each l e v e l s u r f a c e o f u , i s a n o n n u l l f u n c t i o n i n each x . 

For*, y e tf'we wil l write JE > y if x.> y. i'= 1 ... / a n d * * ? . 

DEFINITION 2. A u t i l i t y f u n c t i o n is s t r i c t l y m o n o t o n e i f x > y ^ u(x) > u(y). 

DEFINITION 3. We say t h a t ue C2 i s p r o p e r if t h e l i m i t of \ u \ x ) \ i s i n f i n i t e , 
when x a p p r o a c h e s t o t h e b o u n d a r y o f R 1 ^ , i . e . t h e setB = {x : x { = Ofor 
some /=!,...,«}. 
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We w i l l consider the space U of all measurable functions 
U-.QxR^-tR, such that U ( s , •) e A for each s e Q. 

We introduce the uniform convergence in this space: Un - > U if 
\ \ U n - U\\K - » 0 for any compact K c R1^, where Hi / , - t / l l^ = " 

ess sup max {If/ (j, z) - t/(s, z)l + 131/ (s, z) - 3£/(j, z)l 

+ \ d 2 U n ( s , z ) - d 2 U ( s , z ) \ ) . 

We say that a real number A/, is the essential supremum of / , and we 
write, ess sup s e n / 0 ) if l / l < M for almost all s e Q. 

Each agent is characterized by his utility function u. and by his 
endowment w.e M . 

Froni now on we wil l work with economies with the following 
characteristics: 

a ) The utility functions u.: M - > R are separable. This means that 
they can be represented by 

u.(x) = f U.(s, x ( s ) ) d v ( s ) i = 1 , . . . . n (1) 
' n ' 

where U.: ft x / J ^ - » R and t/.(s, •) is the utility function at every state 
s e i i . ' 

6) The utility functions U^s, •) belongs to a fixed compact subset of 
A , for each i e f i a n d i / . e U. 

b o ^ e d ^ ^ f ^ ^ 
w i t h , ! r 5 i «r W , 1 1 l l T l ^ O 

The S o w ng def nitons a e standa d 

DEFINITION 4. A n a l l o c a t i o n of c o m m o d i t i e s i s a U s t x = (* , , . . . , x,) wftere 

x : ft ^ # l n and £ w 

DEFINITION 5. A c o m m o d i t y p r i c e system i s a m e a s u r a b l e f u n c t i o n 
p -.a-^R1^, a n d f o r any z Rl we denote by (p, z) t h e r e a l n u m b e r 
¡£1 p ( s ) z ( s ) d v ( s ) . (We a r e n o t u s i n g any s p e c i f i c s y m b o l f o r t h e E u c l i d e a n 
i n n e r p r o d u c t i n R l . ) 
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DEFINITION 6. The p a i r (p, x ) i s a n e q u i l i b r i u m if: 
i) p i s a c o m m o d i t y p r i c e system a n d x i s a n a l l o c a t i o n , 

i i ) ( p , x ) < ( p , w ) < oo far a l l i 6 {1 , . . . , n } 
Hi) if ( p i z) < ( p , w ) w i t h z - . C l ^ R 1 ^ , then 

I U.(s, x . ( s ) ) d v ( s ) > [17.(5, z ( s ) ) d v ( s ) f o r a l l i e {!,...,«}. 

2. The Excess Utility Function 

In order to obtain our results we introduce the excess utility function. 
We begin by writing the following well known proposition: 

PROPOSITION 1. F o r each X i n t h e ( n - 1) d i m e n s i o n a l open s i m p l e x , 
A " ~ 1 = {X € = 1 } , t h e r e exists 

x ( k ) = { x l ( k ) , . . . , x n ( k ) } e R1^ 

s o l u t i o n of t h e f o l l o w i n g p r o b l e m : 

max W * / ) 
i 

s u b j e c t t o £ x . < £ w. a n d x . > 0. (2) 

If Ui depend also on s e ft, and U.(s, •) e A for each s e ft, and 
Xe A " ~ \ there exists x(s, X) = X ) , , x n ( s , X) solution of the fol­
lowing problem: 

m a K m e ^ ^ X . U . ( s , x . ( s ) ) 

subject to ^ x . ( s ) < £ w.(s) and x . ( s ) > 0 (3) 

If y J ( s , X ) are the Lagrange mul t ip l ie r s of problem (3), 
j e {1, . . . , /}, then from the first order conditions we have that 

d U . ( s , x { s , X)) 
X. = Y / ( j , k ) w i t h / e { 1 , . . . , « } a n d j e { 1 , . . . , / } . 

' dx! 
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Then the following identities hold 

X d U . ( s , x . ( s , X)) = y ( s , X) for all / = 1, ... , n; for all s e ft. (4) 

R E M A R K 1. From the Inada condition of "infinite marginal utility" at zero 
(definition 3), the solution of (3) must be strictly positive almost every­
where. Since U ( s , •) is a monotone function, we can deduce that 

£*,•(*) = j!>/(*) • 
¡ = 1 ¡ = 1 

Let us now define the excess utility function. 

DEFINITION 7. L e t x f c , X ) ; i e { \ , . . . , n } b e a s o l u t i o n of (3). 
We say t h a t e : A " ~ 1 - > R"e(X) = ( e ^ X ) , en(X)), w i t h 

e.(X) = ^- J y ( s , X)[x.(s, X) - w . ( s ) ] d v ( s ) , i = \ , . . . , n . (5) 

i s t h e excess u t i l i t y f u n c t i o n . 

REMARK 2. Since the solution of (3) is homogeneous of degree zero, i.e. 
x ( s , X) = x ( s , aX) for any a > 0, then we can consider e,: defined all over 
R l ^ by e , { d k ) = e,{X) for all X e A ^ 1 , a > 0. 

3. Equilibrium and the Excess Utility Function 

Let us now consider the following problem: 

MAX*E M X . \ J n U f a x i ( s ) ) M s ) 
i Q 

subject to X x (s) < X w (j) and x (s) > 0. (6) 
i 1 

It is a well known proposition that an allocation x is Pareto optimal i f and 
on ly j f we can choose a X such that x solves the above problem, with 
X = X. Moreover, since a consumer with zero social weight receive 
nothing of value at a solution of this problem, we have that if £ is a strictly 
positive allocation, that is [x e R l

+ + ] , all consumer has_a positive social 
weight. See for instance Kehoe (1991). Reciprocally i f A, is in the interior 
of the simplex, then from remark (1) the solution x( . , X) of (6) is a strictly 
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positive Pareto optimal allocation. (This is guaranteed also by the follow­
ing boundary condition on preferences: {v(i) e R1^ : v{s) fc.w.(j)} is 
closed for almost every state ( a . e . s . ) , for all / and w.{s) strictly positive). 

REMARK 3. Our approach requires that a Pareto optimal allocation exists. 
Observe that in our model the closedness condition introduced by Mas-
Colell (1986) is satisfied. That is U = { ( u ^ u n ( x n ) ) : ( x , , x n ) 
is a feasible allocation} is a closed subset of Rn

+. 

From the first welfare theorem, we have that every equilibrium 
allocation is Pareto optimal. 

Let x be an equilibrium allocation, then there exists a X, such that 
x = { 5 c . , . . ., x }: Q - > R" is a solution for the problem in the beginning 
of this section." 

In the conditions of our model, the first order conditions for this 
problem are the same as those in (3). Then if a pair (p, x ) i s a price-al­
location equilibrium, there exists a X such that x ( s ) = x(s, X); solves (6), 
and p ( s ) = y(s, X) solves (4) for a.e.s. 

Moreover we have the following proposition: 

PROPOSITION 2. A p a i r (p, x ) i s a n e q u i l i b r i u m if a n d o n l y i f j h e r e exists 
X e A " - 1 such t h a t x ( s ) = x(s, X); solves (6) a n d p ( s ) = y(s, X), solves (4) 

f o r a.e.s. a n d e ( X ) = 0. 

PROOF. Suppose that x(- , X ) solves (6) and y(s, X) solves (4). If for 
X € A " " J we have that e(X) = 0, then the pair [ p , x ) , withp = y(-, X) and 
x = x ( - , X ) , is an equilibrium. • 

Reciprocally, if ( p , x ) is an equilibrium, then is straightforward 
from definition that e(X) = 0. From the first welfare theorem, there 
exists Xe A" ~ 1 such that x is a solution for (6). Since p is an equi­
librium price, it is a support for x , i.e. if for some x we have that 
Kf(jc) > u . ( x ) , i = {1, . . . , n}, strictly for some /, then ( p , x ) > ( p , w ) 
and from the first order conditions we have that: p { s ) = y { s ) . The 
proposition follows. 

Let be S'^1 = {X s R" : a i l 2 = f^X2 = 1}. 

From remark 2, with a = can consider e defined on S" ~ 
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We wil l give now the definition of the equilibrium set. 

DEFINITION 8. We w i l l say t h a t X i s a n e q u i l i b r i u m f o r t h e economy if 
Xs E , w h e r e E = { X e S ' l ; 1 : e(X.) = 0}. The set E w i l l be c a l l e d , t h e 
e q u i l i b r i u m set of t h e economy. 

A pair formed by a utility function and an endowment wi l l be called 
a characteristic. 

We wil l endow the set of characteristics C = U x M with the fol­
lowing topology: ( U n , w n ) - » ( U , w ) i f for each compact K e R1^ 

\ \ ( U n , w n ) - ( U , w ) \ \ K -> 0 with n - > «, 

where 

w ) \ \ K — \\(U)WK + llwll — ess sup s e ^max^ l i / l + \ d U \ + 19 U\ + lli-v^)!!) 

This is a metrizable space and the induced metric can be taken as: 
W(U, w ) \ \ K 

\\(U, w)\\ = Y 2~N 

l + \\(U, w ) \ \ K 

where K N = {ze R l - . j j ^ z ^ N } . 
A n economy 8 is a list (£/., w.) e C , i s / , where / is a set of 

traders. Let T be the set of economies with characteristics in Csuch that 
zero is a regular value of its excess utility function. 

That is, for any X such that e(X) = 0 we have that rank of the 
Jacobian of e(X) is n - 1, i.e.: r a n k J[e(X)] = n - l . 

From Mas-Colell (1991), we know that T is open and dense in the 
set of economies. Fromnow on we wil l work with economies in I \ 

Let be 1 = {X e R" : XX = 0}, and % the orthogonal projec­
tion from R" onto TXS'^Since whenever e(X) = 0, J[e(X)] maps into 
T l S ' l ^ 1 (to_verify it differentiate Xe(X) = 0). Therefore if X is a regular 
value, J[e(X)] maps onto Its determinant is equal to the deter­
minant of the following matrix, see (Mas-Colell, 1985, B . 5.2): 

[ n x J [ e ( X ) ] ) • 
J(e(X)) X 

- X"' 0 



UNIQUENESS OF EQUILIBRIUM 11 

Since I L J[e(X)] is an isomorphism from TTS"71 onto T^7\ its deter¬
minant is not zero. 

We w i l l put sign7(e(A,)) = ( + l ) - l accord ing to whether 
det [ n T J ( e ( X ) ) ] ( > 0)<0. 

We are now in condition of stating our main result: 

THEOREM 1. C o n s i d e r a n economy i n Y w i t h a n i n f i n i t e d i m e n s i o n a l 
c o n s u m p t i o n set, a n d s e p a r a b l e u t i l i t i e s s a t i s f y i n g t h e c o n d i t i o n s i n 
s e c t i o n 1 ) , t h e n : 

1 ) The c a r d i n a l i t y o f E i s f i n i t e a n d odd, 
2 ) If s i g n J(e(X)) i s c o n s t a n t i n E , t h e r e exists a n u n i q u e e q u i ­

l i b r i u m , w h e r e J(e({X)) denote t h e J a c o b i a n of t h e excess u t i l i t y f u n c ­
t i o n . 

4. Examples of Economies with Uniqueness 

In this section we consider some examples with uniqueness of equilibria. 
ow / am 

d e ( X ) 

Let [ J ( e ( X ) ) \ . be the term in the row / and c o l u m n o f the Jacobian 
of the excess utility function. 

[J(e(X))} 
</' dX. 

j 
Then 

f d { d U . ( s , x i ( s , X ) ) [ x i ( s , X ) - w ( s ) ] \ 
[ J ( e ( k ) ) ] . r ) n ^—! ^ '- d v ( s ) (7) 

where d U . = 
du. du. 

l_ l_ 

dx " • • ' . a* 
and x . ( s , X) = (*.,(*, I ) , . . . , x u ( s , X)). 

We have that 

dX. dXj 
d 2 U . with 

dx.(X) 

dX. 

dx., dx ^ 
il 

dX. ' ' dX. 
V J 'J 
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and 

d 2 U . = 

tfU./dx2 3 2 t / . /3x,3x, 
í 1 ¿ 1 2 

d 2 U . / d x 0 d x . 3 2 í / . / 3 x 2 

( 2 1 i 2 
d 2 U . / d x , d x , 

i 2 l i 

d 2 U . / d x . d x . d 2 U . / d x , d x 0 

i l l ¡ 1 2 
d 2 U / d x 2 

Then, we obtain 

(8) 

4.1. E c o n o m i e s w i t h G r o s s Substitutes P r o p e r t y 

Following Dana (1993) we give the following definition. 

DEFINITION 9. The excess u t i l i t y f u n c t i o n d i s p l a y s t h e so c a l l e d " G r o s s 
S u b s t i t u t e " p r o p e r t y if: 

This property is only formally similar to the Gross Substitutes 
property displayed in some cases for the excess demand function, and 
has no straightforward economical sense. However, we have that the 
excess utility function of a consumer is raised i f it is in his social 
weight, and that it is lowered if the social weight of some other con­
sumer is raised. 

PROPOSITION 3. / / t h e excess u t i l i t y f u n c t i o n has t h e G r o s s S u b s t i t u t e 
p r o p e r t y , then s i g n J ( e ( k ) ) i s c o n s t a n t . 

PROOF. Let A be the ( n - l ) x ( n - l ) northwestern submatrix of 
{ J { e ( k ) ) + [ J ( e ( X ) ) ] t r ] . From the Gross Substitute property we can prove 
that A has dominant diagonal positive (see McKenzie, 1960). Let be 
vn = (0,. . . , 1), as rank J(e(X}) is (n - 1), then for all vector z such that 
zvn = 0 we have that zJ{e{X))z > 0. 

de.(X) 
I (>0)<0 if ( i = j ) i * j . 
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Now take v 0 with A,v — 0 and let v a = v + aA.; i f a = — then 

v v = 0. If e(X) = 0 we have that v j { e ( k ) ) v a = v7(e(X,)) > 0. Trial is if 
e ( k ) = 0 then J ( e ( k ) ) as a map from \ to 7^ is positive definite, then its 
determinant is positive. 

Now theorem 1 guarantees uniqueness of equilibria. • 

4.1.1. Economies with One Good in Each State 

Economies with one good in each state of the world and utility functions 
with the next property 

^ V w ) + ^ > 0 (*) 
dx2 [ ' dx ~U' V ; 

have Gross Substitute property. See Dana (1993). 

For the following two examples the above condition is satisfied. 

EXAMPLE 1. Suppose an economy with individual s utility. 

U'(x) — U . ( x ( s ) ) g . ( s ) d v ( s ) , with g . . ¿1 —>R and i — {1 , . . . , « } . 

If U.(x) satisfies (*), then we have uniqueness. 

For instance- u (x) = f x(s)ae ~ r ' d v ( s ) with 0 < a < 1 and r > 0 

EXAMPLE 2. Let us now consider economies with the following utilities: 

u { x ) = \ [ a { s ) + b { s ) x ( s ) ] a ' d v ( s ) . 
Where a.(s) > - w(s) b { s ) > 0 and 0 < a. < 1. For these economies 

(*) is satisfied. 
EXAMPLE 3. If the economy has one good in each state of the world, i.e. 
x : Q . - > R , and if each agent has risk aversion smaller than one, then the 
economy display Gross Substitute property. See Dana (1993). 

The condition d[xdU] > 0 is equivalent to risk aversion smaller than 
one. So, risk aversion smaller than one implies (*), then uniqueness of 
equilibrium follows. 

E X A M P L E 4. Consider the following optimal control problem: 
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Given an initial endowment x > 0, an investor wishes to choose an 
admissible pair (71, c ) of portfolio and consumption processes, so as to 
maximize 

Vnc = E ^ e ' ^ ^ u ) J u U ( C ) d s 

over every pair ( n , c ) admissible for x (Karatzas and Sreve, 1988). 
For U. as in example 3 the solution is unique. 

4.2. S e p a r a b l e U t i l i t y i n Goods a n d States 

Consider economies with good-separable utility functions, i.e. 

— - * r = 0 f o r a l l A s { ! , . . . , « } and i , k e {!,...,«}, i*k. 

PROPOSITION4. L e t U be a u t i l i t y f u n c t i o n t h a t i s b o t h a d d i t i v e l y s e p a r a b l e 
a n d g o o d s e p a r a b l e . If 

d 2 U h ( s , x h ( s , A)) [ x h ( s , X) - w h ( s ) ] ' r 

+ [dUh(s,xh(s,X))r»0(«0) (9) 

for all he {1 , . . . ,n} and s e Q., 

then we have uniqueness. 

PROOF. From the first order conditions, (2), we have that 

x^s, A,)) = . . . = X d U n ( s , x n ( s , X) 

that is 

d U . d U 
X . s . . . = X — I for all k e { 1 , . . . ,/} 

1 dxk " dxk X ' 
where 

x h = [ x \ , . . . , x l

h ) \ < h < n 



UNIQUENESS OF EQUILIBRIUM 15 

Taking derivatives with respect to X.(j e {1 , . . . , «},) and recalling 
that d 2 U h / dx'dx* = 0, it follows that ' 

dx\ dx* dxk 

V u ^ = --- = V / . a f + ^ = - - - V « , a f do) 
j j ./' 

where & n d U h 

a» = a n d bkl = - 4 . 
dxe h k dbc* 

Let w k ( s ) be the total endowment of good k. 
From x \ { s , %) + . . . + x^s, X) = we obtain that 

dx" dxk 

J J 

From (8) we obtain the following equation 

x ~ ^ k l x = ^ x - ; i o x ^ h * j - ( 1 2 ) 

Replacing (10) in (9) and without loss of generality supposing that j * 1 
and j*h±\ gives 

dx\ dx* 34 r , 1 
3 A + 3 i + 3 T ± X a ~ V i t = 0 ' 

or equivalently 
3^ 3^ r , ] 

I ^ t - Vu=°-
From (8) 

dxk dx* 

(13) 

^ f l l * 3A,. + ^ ' a i k dX. ^1 ^ 

Finally, replacing (12) in (11) we obtain 

dx\ b., 
— 1 ^ <0 

i t v 1 
h X , a , , 

h hk 
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< 0 , for all k and i & j . ( 1 5 ) 
aX. 

j 
From the fact that x(X) is homogeneous of degree zero we obtain that 

dxk 

^ > 0, for all k and /. ( 16 ) 
OA.. 

Then (13) and (14) are sufficient conditions to obtain (8) of proposition 2. • 

If the economy has one good in each state of the world, we have 
that: 

R E M A R K 4 : If x(s, •) : A - > R, the fact that 

x.(s,X,,...,X. ., ... , X ) 
r 1 k - 1 k + 1 /î y 

is increasing for X . and decreasing i f X k , k * i has economical sense 
because x(X) is a solution of the social choice problem. 

That is i f the social weight of i - t h agent is increased, then the 
consumption bundle of the agent must also increase. 

The following example illustrates proposition 4. 

E X A M P L E 5 . Economies with utility functions such that 

d U . ( s , x ) 

dx 

have a unique equilibrium price. 

> 0 ( 1 7 ) 

In order to prove this assertion recall that: 
1 ) w . ( s ) is positive for all i and s e ft, 
2 ) the Hessian is a diagonal matrix with positive entries. 
For instance, economies with the following utility functions 

r N 

U(x) = ] ^ [ J j p > u . ( x j ) ] d l l ( s ) 
7 = 0 

with x - x v . . . , x n , u . ( x ) = x a j and 0 < p < 1, 0 < a. < 1, have Gross 
Subtitute property." ' ' ' ' 
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4.3. E c o n o m i e s w i t h T w o Goods a n d T w o Agents 

Let £ be an economy with two goods an two agents («., w ) , i = {1, 2}. 
From the first order condition we have that: 

where x . ^ x 1 , * 2 ) . Taking derivatives with respect to \ in the above 
identity'we obtain: 

b\ + \ a ' } ^ r -
dx2 dx\ ax? 

^ V f ^ V ^ + V ^ - 1 . 2 (18) 
where 

a k ) 
d 2 U . 

— 
' dxk dxJ 

a n d i ' - = ^ ; i , j , k = 1,2. 
1 9x' 

Let w k ( s ) be the endowment of good k. Then 

4 ( s , A) + x \ { s , X) - w k ( s ) 

Hence dx\ dx\ 

Replacing (18) in (16): 
dx\ dx] 

( k { a \ l + \ a 2 ) ^ - + (ky2 + \ a X 2 ) = -b 

(19) 

(20) 

Then 

and 

dx\ dx\ 
( \ a f + A. 2a 2 1) ^ - + { \ a 2 2 + X 2 a f ) ^ - = -

- b \ \ a \ 2 + \ a l

2 

12 

- è 2 \ a 2 2 + X 2 a 2 2 
(21) 

(22) 
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where V is the determinant of a 2 x 2 Hessian matrix of a convex 
combination of diffentiably strictly concave functions, then V is non 
negative. We suppose that V > 0. 

Since x ( k ) is homogeneous of degree zero (see lemma 2, section 5) 
we obtain that 

ax* ox* 
s g n i ^ - = -sgn^- k = 1,2 and (23) 

From (18) we obtain that: 

ax* ax* 
^ p = - ^ r i ¿ = 1 , 2 and 7 ^ 1 (24) 
o h . ok. 

J .1 
The next proposition follows. 

dx\ 
PROPOSITION 5. If t h e s i g n of ^ i s t h e same f o r a l l i j = (1,2) a n d if 

j 

sgn [ d 2 U . • (x. - w\) + d U t ] i s c o n s t a n t (25) 

then uniqueness f o l l o w s . 

PROOF. In this conditions the Gross Substitute property follows. 
A sufficient condition to obtain (24) is that: 

[ d 2 U . - w . ] < 0 and d 
d U . ( s , x) 

X 3x 
>0 

E X A M P L E 6. Economies with a}> > 0 iïj and k = 1,2 satisfying (24), have 
uniqueness of equilibrium. 

E X A M P L E 7. Suppose an economy with 

u A X ) = f (a(i)x(s) + i(s)y(s))arfji(i) 
a 

M 2 ( A ) = J W J ) p +y(j)T)4i(s). 

Where Z = (x, y) 0 < {a, (3, y} < 1 with a and 6 integral functions: 
Q -> 7?^. The endowments are w. = [ w i x , w . J . 
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We obtain that 

d 2 £/,(*) + d U x = a 2 ( a x + b y ) a ~ l { a , b } > 0 

d 2 U l W = a ( a - 1) ( a x + b y ) a - 2 { a w u + bwly, bw{x + aw, } < 0 

Then 
[a2i/,(jc - + ac/j > o 

From (19) and (20) it follows that 

^ = - 1 a ( a x + b y ) a - % y ( y - \ ) y y 2 > 0 

^ r 1 = - 1 a iax, + fry,)° ~ '^2P((3 - 1 ) x \ " 2 > 0. 

These conditions are satisfied for « 2 because it is a separable utility 
function. Uniqueness follows. 

E X A M P L E 8. The same result is obtained with 

U i ( X ) = \^ \ o g [ a ( s ) x ( s ) + b ( s ) y ( s ) ] d l l ( s ) 

and u2 is a separable utility function. 

Analogously to the Walrasian tatonement, the differential equation 
system X = e(X), (since Xe TXS'^1) defines a dynamical system on 
S'l;1. Unfortunately its economical sense is not as rich as in the 
t a t o n e m e n t process. However, if there is only one good available in 
each state of the world, it prescribes that the excess utility function of a 
consumer be raised (resp. lowered) if his social weights does (see 
remark 3). 

R E M A R K 5. As a straightforward application of theorem 1) we observe that 
if for each X e E there exists a neighborhood A^ , such _that for all 
X Q e the solution X(t, X 0 ) of the X = e(X), converges to X as t - > <*>, 
then there exists an unique equilibrium. To see this, observe that a 
necessary condition for X ( t , X 0 ) X is that the sign ofJe(X) is a constant. 
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In some others cases we can prove uniqueness of equilibrium as 
straightforward application of the first order conditions. For instance if 
u. = jQx«is). .. x % ( s ) d v { s ) for a l l i w i th % a . = \ and a > 0 , then 
e(^) = 0, if and only if A, = {-!-•••-J-}. ' = • ' 

5. Proofs 

The main tool that wi l l be used to prove theorem 1 is the Poincaré Hopf 
theorem. 

Let us recall it. 

POINCARÉ HOPF THEOREM. Let N be a compact n-dimensional C 1 manifold 
with boundary and /a vector field on N . Suppose that: 

/j/points outward at dN [this means that/0)g(x) > 0 for all x e d N , 
where g is the Gauss map] and, 

//;/has a finite number of zeros. 
Then, the sum of the indices o f f at the different zeros equals the Euler 
characteristic of N . 

For the definition of index of / at x (zero of J) and the Euler 
characteristic of N , see Mas-Colell ( 1985 ) . 

We need, also, the following lemmas: 

L E M M A 1. The excess u t i l i t y f u n c t i o n i s C 1 . 

PROOF. The Lagrange multiplier y(s, A) and the Pareto optimal allocation 
x , { s , A) are C 1 with respect to A. To prove this affirmation let us consider 
the following system of equations: 

\ j d U . ( s , x ( s , X ) ) = Yis, A) 
n n 

X x ( ( 5 , A ) = X w , ( i ) ( 2 6 ) 
/=! /=i 

From the implicit function theorem, taking derivatives in the above 
system, with respect to x and y , we obtain a matrix with the following 
form: 

A B M -
B ' 0 
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Where A is a ( n l ) x ( n l ) matrix: and B is a ( n l ) x / matrix. 

A -

i / ; , ... u)x o 
: : : 0 

u \ i uu 0 

0 ... 0 \ 

0 

0 
0 

0 
i/jj ... [/'/, 

0 0 0 . . u\x . . . u " u 

and 

5 : 

1 0 . . 0 
0 1 . . 0 

0 0 . . 1 
1 0 . . 1 
0 1 . . 0 

0 b . . i 

That is, B is a / x (nl) matrix. • 

C L A I M . There is no vector z = (v, w ) * 0 with v € Rnl and w e Rl such that 
M z = 0. 

PROOF. Let v such that M z = 0, then 

fl"v = 0 

and 

Av + B w - 0 

Then, from (26) and (27) we have that 

v""Av = 0 

(27) 

(28) 

(29) 



22 ESTUDIOS ECONÓMICOS 

If v e k e r B ' r then 

v , + v i + 1 + . . . + v ( B _ 1 ) / + 1 = 0 

v 2 + v / + 2 + . . . + v ( j l _ , ) i + 2 = 0 

vl + v2l + . . . + vn[ = 0 

Observe that 
3 £ X't/1' = 

/= 1 

at/1 at/1 , ] at/1

 V 1at/" ,„ at/" ^ a t A 
{ "3x7' 3x7' • • " ~3x7' " " 3x7' "3x7'' • " "3x7 } ~ 

~ {y»y J ••• »T> •••, y , y , . . . , y , . . . , y , y , . . . , y }. 

Then / ( 

3{£A' ' i / ' } .v = 
i = i 

Yjiv, + v / + ] + ... + v ( j i _ 1 ) i + ]) + ... +y ;(v ; + v 2 / + ... + v j = 0 (30) 

From (28), (29) and the strictly differentiably convexity of £ X ' V 
we deduce that v = 0. ¿=1 

Then, since B is an injective matrix, from (26) w = 0. We have 
that z = 0. Proving our claim. 

From the claim and the fact that U.(s, •) is in a compact set of A , the 
lemma follows. 

L E M M A 2. The excess u t i l i t y f u n c t i o n has t h e f o l l o w i n g p r o p e r t i e s : 

1 ) e(X) i s homogeneous of degree z e r o ; 
2 ) Xe(X) = 0 , f o r a l l X e R'^; 
3 ) t h e r e exists I c e R such t h a t e{X) « k l . 
4 ) \\e(\)\\-*°°as'k.-*0foranyje {1, ... , n ) a n d X e A " " 1 ; 
5 ) J[e(X)] : TxS'^l J ^ > TXS'^1 

PROOF. From remark 1, property 1) follows. Properties 2) and 4) follow 
from remark 2) and definition 7). Property 5) was proved immediately 
before definition 10). 
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To prove property 3, note that from equation (2) we can write 

e.(X) = d U . ( s , xJfa)) X) - w.(j)]rfv(j). 

From the concavity of U. it follows that: 

U.(s, x(s, X)) - UJis, w ( s ) ) > d U . ( s , x(s, X)) (xJis, X) - w ( s ) ) . 

Therefore, 

e.(X) < U.(s, x(s, X)) - U { w { s ) ) d v { s ) < J t / . (Y w . ( s ) ) d v ( s ) , for all X. 
7 = 1 

If we let 
n 

k i = i U . & w ^ d v i s ) and k = sup L , 

property 3 follows. • 

We can now prove the following lemma: 

L E M M A 3. The excess u t i l i t y f u n c t i o n i s a n o u t w a r d p o i n t i n g v e c t o r f i e l d 
a t t h e b o u n d a r y ofSn^ \ 

PROOF. From property 2 of lemma 2 it follows that e(X) e TXS"^ 1. 
To prove that e(X) is an outward pointing vector field, let us now 

define z. 
e . ( X m ) c.y,,m 

Z : = lim 
' - g^-. \\e(Xm)\\ 

By property 3 we know that there exists k e R such that e f k ) < k and by 
Property 4, -> ~ . Then we conclude that z. < 0. ' • 

Furthermore, z. could be different from zero only if X. were zero. 
i i 

This follows from the fact that if X. is different from zero, then we can 
write 

e . { X ' " ) = ^ ^ e . ( X m ) > - ^ . 
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Letting k' = - k n / A™, we have that k' < e f k " 1 ) < k. Hence z. = 0. 
Strictly speaking, we have proved that we have a continuous out­

ward pointing vector field for a l m o s t any p o i n t in the boundry of S'^ K 
The excess utility function has similar properties to those of the excess 
demand function. Mas-Colell (1985) proves that for excess demand 
functions there is an homotopic in ward vector field for a l l p o i n t s of the 
boundary S ^ K l n our case, with an analogous proof, we can obtain an 
homotopic outward vector field for excess utility functions. 

PROOF OF THEOREM 1. Since 1 is homeomorphic to the (n - ^-dimen­
sional disk, its Euler characteristic is one. 

The equilibrium set £ is a compact set. Moreover, from the fact that 
zero is a regular value of e, we have that £ is a finite set. On the other 
hand, e ( k ) is a C 1 vector field on the tangent space pointing outward at 
the boundary of S'^ Then we can apply the Poincaré Hopf theorem. 

In our case, the index of the vector field e at X e E is the sign of 
determinant of J [ e ( k ) ] . 

So, we obtain that: 

1= X s i g n d e t J { e ( X ) ) . 

The theorem follows by simple cardinality arguments. • 

6. Mitjushim-Polterovich Condition 

In this section we shall show that if there exists a demand function, the 
Mitjushim-Polterovich condition (MP) (Mitjushim-Polterovich, 1978) 
can be applied for economies with a Banach space as consumption space. 
Since strict monotonicity of individual demand functions with respect to 
a fixed vector implies that the weak axiom of revealed preference holds 
for the aggregate, then M P condition guarantees convexity of the equi­
librium set also in models involving infinite dimensional linear spaces. 
Furthermore, i f the economy is distributive then the M P condition guaran­
tees uniqueness of equilibrium. 

We recall that the M P condition says that: if t h e C 1 d e m a n d f u n c t i o n 
h-.R'^-^R1^ i s g e n e r a t e d by t h e C2, m o n o t o n e , c o n c a v e u t i l i t y f u n e -
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t i o n u:Rl-*R, then a sufficient c o n d i t i o n f o r t h e s t r i c t m o n o t o n i c i t y of 
h i s t h a t 

. , ( x , d 2 u { x ) x ) . . 
W ~ ( x , d u ( x ) ) ' 

6.1. Some C o n s i d e r a t i o n s A b o u t t h e D e m a n d F u n c t i o n 

We say that the demand function <X>(p, w ) is defined in ( p , w ) if it exists 
as a solution of sup, „ x u ( x ) . Where A is a closed and convex subset 

r we A , p x = w\ v ' 
of the commodity space B . 

REMARK 6. In economies with infinite dimensional consumption spaces, 
demand functions with strong properties are rare. Moreover, since the 
agent's budget may not be compact we can not guarantee the existence 
of demand functions. See Araujo (1987). 

6.2. M o n o t o n e O p e r a t o r s 

In order to obtain the main result of this section, we will consider some 
properties of monotone operators in Banach spaces. 

Let B be a real Banach space, let B* be the dual space of B , and let 
F : B* -4 B be an operator. 

DEFINITION 10. F i s c a l l e d m o n o t o n e ( s t r i c t l y ) if 

( F(p) - F ( q ) , p - q ) < 0(< 0) for all p , q ( p * q ) & B * . 

DEFINITION 11. If t h e o p e r a t o r F : B* - » B d e f i n e d o n a n open s e t D ( F ) has 
a G a t e a u x differential a t p , F i s s a i d t o be l o c a l l y s t r i c t l y m o n o t o n e a t t h e 
p o i n t p e D ( F ) if t h e G a t e a u x - d e r i v a t i v e F ' ( p ) : B* -> B * * , w h e r e B** i s 
t h e second d u a l space f o r B , i s n e g a t i v e d e f i n i t e . T h a t i s 

( F ' ( p ) K h ) < 0 f o r a l l he B* w i t h h*0. 

L E M M A 4. L e t F be a G a t e a u x d i f f e r e n t i a b l e o p e r a t o r i n a convex set 
D c B * ; then t h e n e g a t i v e definiteness o f F ( p ) i m p l i e s t h e s t r i c t m o n o ­
t o n i c i t y o f F . 
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PROOF. For p and q <= D , let us consider v = p ~ q and p(oc) = 
a p + { l - a ) q , wi thO<cc< 1. 

Define the function g : [0, 1] -> R by g(cc) = (v, (F(p(a)) - F ( q ) ) ) . 
We obtain: g'(a) = <v, f*(p(a))v>. Since g(p) = 0, and g'(ce)<0, then 
g ( \ ) = ( ( p ~ q ) , ( F ( p ) - F ( q ) ) ) < 0 . m 

DEFINITION 12. We say t h a t F i s m o n o t o n e w i t h respect t o t h e n o r m a l i z i n g 
v e c t o r e > 0 i f ( F ( p ) - F ( q ) ) ( p - q ) < 0 whenever ( p , e) = ( q , e) = 1 (it 
i s s t r i c t l y m o n o t o n e if t h e i n e q u a l i t y i s s t r i c t f o r a l l p * q ) . 

6.3. The M o d e l 

We shall consider a pure exchange economy with uncertainty in the states 
of the world ft, and we shall treat uncertainty as a probability space 
(ft, S, v ) , where S is the a-algebra of subsets of ft that are events, and v 
a probability measure. In each state of the world, there are n commodities 
available for consumption. There are m agents, each characterized by his 
consumption space X = Un

= XX., where X . c B + , closed and convex and 
B + is the positive cone o f a Banach space, i.e. B + = {x € B : x > 0}; his 
utility function u.: X —> R and his endowments e. e X , i = { l , ... ,m}. 

Utility functions u. fulfills the following properties: 

H I ) u. is increasing and has continuous Gateaux derivatives up to 
second order. 

H 2 ) The second Gateaux derivative is a negative definite bilinear 
form. 

H 3 ) u. satisfies the Inada condition, that is, its Gateaux derivative is 
inifinite at zero, for each direction heX, \\u'(x)\\ -> °° as x . -> 0 for any 
j e {1, . . . , n } andxe X . ' 

Every consumer i has strictly positive endowments e . = Q£, where 
e is a fixed strictly positive vector in X and 0. is a positive number. The 
normalized set of prices is a fixed, bounded, convex, relatively open set 
P = { p : p e X*_= U"=, X * , X* c B*\ ( p , f ) = \ ) , our set of unnormal-
ized prices is P = { i p ; p ' e P : 8 < X < p , where 8 is a fixed number. 
The budget set for each consumer is the set X . = {x e X : ( p , x ) < 1}. We 
wil l denote for F : P - > X the demand function for each consumer when 
the endowment is fixed. 
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A comment is in order here, since the positive cone of B* has empty 
interior, thus we are allowing for some non-positive prices. Since the 
view taken in this chapter is that the demand function exists, moreover 
there exists some p in B * , such that p is a zero for the excess of demand 
function, then the uniqueness of equilibrium is not conceptually related 
to non positive prices. 

6.4. MP C o n d i t i o n a n d D e m a n d F u n c t i o n 

The M P condition is posed at individual level, the question is: is the M P 
condition a sufficient condition on the preferences of consumer to 
guarantee that individual excess demand is monotone with respect to his 
endowment, for economies with a Banach space as commodity space? 
We give an affirmative answer. 

Note that the property of monotone excess demand is a strong 
property to focus uniqueness of equilibrium, for instance the Weak 
Axiom of Revealed Preference is a more general condition that on 
regular economies, that is economies with isolated equilibria, by itself 
guarantees uniqueness of equilibria. However the first property tourns 
out more convenient to obtain uniqueness of equilibrium, because ag­
gregates better across consumers. 

Let X be a convex and closed subset of a Banach space B , and let 
F : P -» X be a demand function. Suppose that the income is fixed to 
one, that is ( p , F ( p ) ) = 1, for all p e P . 

We wil l use the following notation: 
</i, d u ( x ) ) , for the Gateaux derivative at x with increment h . 
( h , d 2 u ( x ) k ) , for the second Gateaux derivatives at x with incre­

ments h and k. 

THEOREM 2. If a d e m a n d f u n c t i o n F : P - * X i s g e n e r a t e d f r o m a u t i l i t y 
f u n c t i o n u : X - + R t h a t s a t i s f i e s H I , H I , H 3 , then a sufficient c o n d i t i o n 
f o r t h e s t r i c t m o n o t o n i c i t y of F i n each p e P i s 

( x , d 2 u ( x ) x ) , , for al I x G X 4 ( x n u y ^ 0 (31^ W ( x , d u ( x ) ) ' ail A G A . ye, a u ; * u. i J i ; 

PROOF. Define for ( x , d u ( x ) ) * 0, g : B - > B * , giving for the following 
identity: 
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^ = < d ^ ) M x ) - ( 3 2 ) 

Let F be the demand function, i.e. F ( p ) e a r g m a x { u { x ) s.t. ( p , x> = 1, 
I E X ) . 

From H 3 we know that F { p ) is positive in each component for 
almost every * s O, then the following first order condition holds, 
d u ( F ( p ) ) = y p . See Araujo, Monteiro (1989). 

C L A I M . For all p e P we have that g ( F ( p ) ) = p . 

PROOF: For all a e X we have 

(a, g { F { p ) ) = l u { F ( p ) ) ( a ' a " ( F ( / 7 ) ) ) ' 

Since ( p , F ( p ) ) = l , the above equality is well defined. From the first 
order condition we obtain ( F ( p ) , d u ( F ( p ) ) ) = y . We also know that 
( a , d u ( F ( p ) ) ) = y ( a , p ) . F i n a l l y the f o l l o w i n g iden t i ty ho lds , 
<<x, g ( F ( p ) ) ) = (a, p ) for all a e X. Hence g { F ( p ) ) = p , and then the claim 
is proved. 

From claim we have that for all p e P g is the inverse of F . 
Recall that if A is a strictly monotone operator, then the inverse 

operator is strictly monotone. See Zeidler (1990). 
We wi l l prove that g is a monotone operator in F ( p ) . To see this 

recall that, g : X -4 L(X, R ) , then dg : X - » I(X, i (X, R ) ) , then d g ( x ) , 
X x X -> /? is a bilinear form, for all x e P and <x, du(jc)> * 0. See K o l -
mogorov, Fomin (1972). If we prove that (v, dg(x)v) < 0, then g will be 
a strictly monotone function restricted to F ( p ) , and then F wil l be 
strictly monotone. 

Now following Mas-Colell (1988), we wil l show that g is a strictly 
monotone function. Since d u ( x ) = yp and </>,*)= 1, we obtain that 
y = <x, dn(x)>. Denoting q = d u ( x ) and A = d 2 u ( x ) , differentiating g , we 
obtain that: 

d u ( x ) d u ( x ) + 8.H(X) X x f t3^. M(X) 
h 

dg(x) = - ~ r A - - ~ [ q q ' r + q ( A x ) t r ~ \ 

( x , q ) 
a 2 u{x) -
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1 ) If <v, q ) = 0 then v d 2 g ( x ) v = ̂  (v, A v ) < 0. 
2 ) If (v, q ) * 0, it suffices to consider (v, q ) = y, then 

S ince (v, A ( y - x ) ) = <(v - \ x ) , A ( v - \ x ) ) - { ( x , A x ) < - 1 - ( x , A x ) , 
the inequality follows from the concavity of the utility function u. 

Hence <v, d g ( x ) v ) < - - M i ^ M - 1 < 0. Then if a ( x ) < 4, dg(x) w i l l 
be negative definite. { x ' d u ( x ) ) 

The theorem follows. . 

6.5. Uniqueness U s i n g MP 

If each individual demand function F . is a strictly monotone function 
with respect to the endowment e. and if E i is the excess demand function, 
since ( p - q, E . ( p ) - E ( q ) ) = { p - q , F ( p ) . - F ( q ) ) then £ is a strictly 
monotone function respect to the vector e'.. ' 

DEFINITION 13 . A n economy i s s a i d t o be d i s t r i b u t i v e if t h e i n i t i a l endow­
ments a r e c o l l i n e a r («,- = *; e w h e r e *f i s a c o n s t a n t f o r each 
i = { 1 , .. . , « } andes Rn i s a f i x e d v e c t o r ) o r t h e d i s t r i b u t i o n of i n c o m e 
i s p r i c e - i n d e p e n d e n t . 

Since monotonicity of the individual demand function with respect 
to the same vector is preserved in aggregate, then the following theorem 
is straightforward. 

THEOREM 3. L e t £ be a d i s t r i b u t i v e economy, w h i c h s a t i s f i e s t h e MP 
c o n d i t i o n , then 8 has uniqueness of e q u i l i b r i u m . 

PROOF. From theorem 3 we know that the MP condition guarantees the 
strict monotonicity of the individual demand function with respect to the 
normalizing vector e, then the excess utility function is strictly monotone 
with respect to the same vector, and since the economy is distributive we 
obtain a monotone aggregate excess demand function with respect to the 
vector e. Hence uniqueness of equilibrium follows. • 
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REMARK 7. In distributive economies, i f the individual demand function 
are monotones weak axiom holds. 

To see this suppose that E : P - > X is the excess demand function, 
w i t h ( q , E ( p ) ) < 0 , and that p * q , s ince ( p , e) = ( q , e) = I , from 
( p - q, E ( p ) - E ( q ) ) < 0, ( p , E ( q ) ) > 0, follows. 

REMARK 8. As long as the distribution of income is price independent, the 
MP condition guarantees the uniqueness of equilibrium. Nevertheless, the 
situation changes drastically when initial endowments are not collinear. 
For instance consider the following example. 

E X A M P L E . Consider the following two consumer, two goods in each state 
of the world economy, 

{ x ) ^ \ n [ x u ( s ) ] l + E [ x [ 2 { s ) i d l ( s ) , 

, ( x ) = j e [ x 2 l ( s ) ] i + [ x ( s ) 2 2 ] \ d X ( s ) . u2 

Where X is the Lebesgue measure, and the set of the world states 
are a probability space {[01], B ] , with B the Borel a-algebra. 

Endowments are w x ( s ) = (w„(s) , 0); w2(s) = (0, w 2 2 ( s ) ) . Suppose 
that the consumption space is a closed and bounded subset of a positive 
cone in L p ( k ) \ <p<<=°, then we obtain a weakly compact budget set. 
Since utility functions are weakly upper semicontinuous, the existence 
of demand function follows. From the Inada condition we obtain a 
positive for almost every state of the world demand function, then the 
first order condition holds. 

The aggregate demand function is: 

EY ^ ( P 2 W U , e2P2W22 t 2 P \ W n , ^1^22 

n i n c 2 + „ 2 x „ c 2 ' ~TT ¡5+ . c 2 

P 2 + P { e p x + p x p 2 t P 2 + P X P 2 Z P X + P 2

Z 

V J 
for each state of the world. 

The M P coefficients are a x { x ) = a 2 ( x ) = ~, nevertheless the excess 
demand function is not a monotone function. To see this, consider 
{ p - q, E{p) - E ( q ) ) , where E(p) is the excess demand function, 
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p = a ( l , k ? = P(1, 1) where a and p e L«(k), ± + ]• = 1, 6cc(i) > 
a.*.*, andlndowments w 2 2 = ± w „ . For e = ^ , we obtain 

( p - q , E ( p ) - E ( q ) ) > 0 . 

6.6. Examples w i t h Uniqueness of E q u i l i b r i u m 

EXAMPLE 1. Regular and distributive economies with utility functions 
u : L +

p -> 1 </? < oo, satisfying the following condition 

jc(i).a«(i, x ( S ) ) ' 

a.e.i. e O and for all x e P, and (x, d u ( x ) ) * 0 have equilibrium unique­
ness because 

J x ( s ) . d 2 U ( s , x(s))x(s) + 4x(s).dU(s, x(s))dv(s) > 0. 

Then if follows that 

_ (x, d 2 u { x ) . x ) 
( x , d u ( x ) ) < 

and therefore the M P conditions is satisfied. 

E X A M P L E 2. Let X be a L+(v), 1 < p < °° space. A l l distributive and regular 
economies with state separable and good separable utilities, i.e. 
U(x) = t U { s , x { s ) ) (see subsection 2.3.1), that also satisfy 

x . ( s ) d 2 U ( s , x . ( s ) ) 
- ' , ' <4 for all / e (1, . . . , / ) , a.e.s.e Q 

d U ^ x f s ) ) 

and j e f , <x, 9w(x)> * 0 have equilibrium uniqueness. 
If the above inequality is true we have that 

i 

£ x . { s ) d 2 U . ( s , x . { s ) ) x j ( s ) + 4JC.(J)3 U.(s, X j { s ) ) > 0 a.e.s. e Q 

ar equivalently 

x(s)o2t/(s, * ( Î ) ) J C ( Î ) + 4x(5)aC/(s, J C ( J ) ) > 0. 
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Then 
J x ( s ) d 2 U ( s , x ( s ) ) x ( s ) + 4 x ( s ) d U ( s , x ( s ) ) d v ( s ) > 0 
a 

That is ( x , d 2 u ( x ) x ) + {Ax, d u ( x ) > 0), which is equivalent to the M P 
condition. 

It was shown in the last two examples that if for a.e.s. e Q. the 
coefficient of relative risk aversion is less than 4, then it follows that the 
cardinality of equilibria is one. 
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