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Resumen: Existe una creciente literatura experimental sobre teoría 
de juegos y organización industrial que revela desviacio­
nes sistemáticas del equilibrio de Nash. El presente tra­
bajo generaliza el análisis de equilibrio de Nash en 
juegos del tipo de Bertrand para permitir errores de 
decisión determinados endógenamente. Este trabajo pre­
senta soluciones explícitas de las distribuciones de 
precios de equilibrio con errores endógenos para ciertos 
modelos experimentales del tipo de Bertrand Para otros 
modelos más complejos se muestra que el Equilibrio con 
Respuestas Discretas, ERD, es sensible a carAbios en va¬
riables estructurales, mientras que el equilibrio de Nash 
permanece inalterado. El ERD es importante porque ex­
plica las desviaciones sistemáticas del equilibrio de Nash 
observadas en experimentos controlados. 

Abstract: There is a growing body of data from game theory and 
industrial organization experiments that reveals system­
atic deviations from Nash equilibrium behavior. In this 
paper, the perfectly rational decision-making embodied 
in Bertrand-Nash equilibrium is generalized to allow for 
endogenously determined decision errors. Closed-form 
solutions for equilibrium price distributions with endo­
genous errors are derived for several different models. In 
some of these models, the price distribution in a quantal 
response equilibrium, QRE, is affected by changes in 
structural variables although the Nash equilibrium re­
mains unaltered. The quantal response approach is ap­
pealing since it thereby accounts for systematic 
deviations from the Bertrand-Nash equilibrium. 
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1. Introduction 

Although the Nash equilibrium is widely used in economic theory, there 
is some dissatisfaction with this concept. One criticism is that rationality is 
less restrictive than the Nash equilibrium implies. In general, there are 
many more strategies that may be considered rational choices, according 
to some beliefs, than merely those choices described as Nash equilibrium 
strategies, Bernheim (1984) and Piearce (1984).1 Other critics find the 
Nash equilibrium concept to be too unrestrictive because it allows for 
behavior that is intuitively unreasonable. The literature on r e f i n e ­
ments, beginning with Selten (1975), has developed a series of proposed 5 
rules for eliminating such implausible equilibria. Articles on refinements 
typically begin with examples having several Nash equilibria, some of 
which are intuitively implausible because, for instance, they are based on 
strategies that can be interpreted as noncredible threats.2 Some econo­
mists have therefore proposed that an analysis of learning and adjustment 
is the most useful way to proceed. The literature on the topic of evolu­
tionary game theory consistently adopts this assumption, going back at 
least to Alchian's (1950) seminal paper and to Simon's (1957) work on 
bounded rationality.3 There is also much recent work on naive (non-stra­
tegic) learning models, showing behavior that converges to a Nash 
equilibrium. 4 

Most theorists are uneasy about models of limited rationality, in 
part because of the looseness and the multiplicity of possible ap­
proaches. However, data from laboratory games with human subjects 
provide empirical regularities that can guide theoretical work on learn-

1 For Benheim and Pearce, a strategy is rationalizable if it is a best reply to strategies 
that the other players might actually use. A particular collection of strategy sets, one for 
each player, is rationalizable if each strategy in the set belonging to player i is a best reply 
to some strategy profile in the sets belonging to the other players. 

2 For further discussion of related issues, see Kohlberg and Mertens (1986) and 
Kreps and Wilson (1982). 

3 This literature is characterized by models with individuals who make choices 
based on rules of thumb or who have some very rigid method of choice. 

4 See Kalai and Lehrer (1991) and the references therein. Brandts and Holt (1992), 
(1993), show that adaptive behavior in laboratory games can result in equilibrium pat­
terns that are ruled out by almost all standard refinements of the sequential Nash 
equilibrium. 
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ing and adjustment. As a first approximation, evidence from game 
experiments tends to conform to Nash equilibrium predictions (Davis 
and Holt, 1993, chapter 2). However, some features of the data from 
market experiments have been difficult to explain in this way. System­
atic deviations from rational behavior have been observed in experi­
ments where the Nash equilibrium is located at the boundary of the set 
of feasible decisions, e.g., in ultimatum and public goods games.5 For 
instance, in a 1-dollar ultimatum bargaining game, the sender proposes 
a split which the receiver must either accept or reject. A rejection results 
in earnings of 0 for both players. For this game, a subgame perfect Nash 
outcome is 1 penny for the receiver and 99 cents for the sender. Yet the 
actual outcomes of experimental ultimatum games are not nearly so 
asymmetric. 

The ultimatum game can be given a simple market interpretation, 
with a single seller proposing a price that the buyer must either accept or 
reject. In market games with multiple price-setting sellers, however, the 
Nash equilibrium may involve randomization if sellers' production ca­
pacities are limited. Experimental data seem to track the qualitative 
features of Nash equilibria in such games, but prices are often much 
higher than the Nash equilibrium predictions (Davis and Holt, 1994). 

In order to sort out the reasons for the observed departures from the 
Nash prediction, a useful positive theory of behavior in games could 
begin by qualifying the assumption that individuals are perfect maxi-
mizers of their own money payoffs. Several authors have relaxed the 
perfect rationality assumption in experimental games: Brown and 
Rosenthal (1990), Camerer and Weigelt (1988), McKelvey and Palfrey 
(1992, 1993), Banks et al. (1994), Brandts and Holt (1992), and 
Palfrey and Rosenthal (1991, 1992). One way is to introduce decision 
error, i.e. in choosing their strategies players make mistakes. Players 
'tremble' and therefore every strategy (even a dominated strategy) is 
played with a strictly positive probability. In the case of vanishingly 
small strategy errors, this approach was originally used to rule out 
unintuitive criteria, especially in extensive form games (Selten, 1975). 

5 See Davis and Holt (1993), chapters 5 and 6. One way to move the Nash equili­
brium away from the boundary in these games is suggested by Palfrey and Prisbrey 
(1993) and Prisbrey (1994). 
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As a first step, it is useful to distinguish between two sources of 
deviations from the Nash equilibria as calculated from expected money 
payoffs. First, systematic deviations may be due to the importance of 
neglected factors, such as altruism, envy, fairness, etc. These factors are 
likely to be more important in bargaining and public goods games than 
in impersonal market situations. Second, non-systematic or random "er­
rors" can follow from mistakes in recording decisions, from time con­
straints as in chess games, or from random errors in evaluating small 
differences in expected payoffs. Experimental evidence suggests that 
non-systematic errors can occur in strategic situations (McKelvey and 
Palfrey, 1993) and also in simpler individual decision-making tasks 
(Anderson, 1994). 

There are many ways to model decision errors. One particularly 
simple approach is based on the discrete choice theory first proposed by 
Luce (1959). Let U l and u2 denote the expected utility associated with 
decisions 1 and 2 respectively. Luce proposed a model in which choice 
probabilities are determined by ratios of expected utilities: 

u. 
Pr(choose decision i) = — ¿ = 1 , 2 . (1) 

M l + U2 

Clearly the probability that the player chooses decision 1 is increas­
ing in the expected utility associated with it, but decreasing in the 
expected utility associated with decision 2. These choice probabilities 
reflect boundedly rational behavior because the player does not always 
choose the decision with the highest utility. 

McFadden's (1984) random utility interpretation of discrete choice 
theory is conceptually very different from the notion of decision errors. 
In McFadden's approach, the modeler can only imperfectly observe the 
characteristics influencing an individual's choice. For example, the u, in 
equation (1) represent the observed parts of an individual's utility, but 
the optimal decision may also depend on unobserved utility elements 
that are random from the point of view of an outside observer. The 
distribution of the random utility elements determines the form of the 
probabilistic choice function (e.g., logit, probit), as discussed below. 
These choice functions are also called "quantal response functions". 

The quantal response functions discussed above are used to model 
individual decisions. Capturing decision error in a way that is clearly 
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spelled out and not ad hoc is a difficult task. The quantal response 
equilibrium does this based on elements borrowed from the discrete or 
quantal choice theory developed by Luce (1959), McFadden (1984) and 
Thurstone (1927). The added complexity of applying the quantal re­
sponse equilibrium to game theory —in contrast to individual c h o i c e -
is that the choice probabilities of the players have an important 
interactive component, since they are simultaneously determined in 
equilibrium. In a quantal response equilibrium, a player's beliefs about 
others' actions wi l l determine the player's own expected payoffs, which 
in turn determine the player's choice probabilities via a quantal re­
sponse function. The model is closed by requiring the choice prob­
abilities to be consistent with the initial beliefs. 

To illustrate the effects of decision errors in a market model, con­
sider the quantal response equilibrium for a simple Bertrand game with 
zero production cost and two price choices. In this game, each seller 
simultaneously chooses between a high price P H , and a low price P L . 
The combination of prices determines payoffs as shown in the table 
below, where seller l 's payoff is listed to the left in each cell. The 
profits from defection, n d , exceed those from cooperation, n c , which in 
turn exceed the profit n n from the Nash equilibrium: n d > n c > n n > 0. 
The only Nash equilibrium outcome is (rt„, J I J . 

Seller 2 

PH P l 

Seller 1 PH nc, %c 0, %d 

Next, consider the effects of decision errors determined in (1). Let 
a denote the probability that seller 2 chooses the cooperative decision 
P H . Given this probability, seller l 's expected payoff is uH = a n c for 
decision P H and uL = a n d + (1 - a ) n n for decision P L . Using the Luce 
choice function (1), player 1 wil l choose decision P i with probability 
u / ( u H + uL ), or equivalent^, 

Prichose decision P ) = c - — . (2) 
" on + a n , + (1 - a ) n 

c a v ' n 
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The equilibrium consistency requirement is that choice probabilities 
correspond to beliefs. In particular, the right side of equation (2) must 
equal a, which provides an equation that can be solved for o: 6 

a = *c % n (3) 
71 - 7C + K , 

e n d 

Clearly, the probability o that a seller chooses the high "coopera­
tive" price P H is positively related to the gain from cooperation, 
(TCC - TC„), and negatively related to the payoff from defection, n d . Since 
P L is a dominant strategy in the Nash game without errors as long as 
%D > TC C , a can be interpreted as the probability of making an error. 

This work investigates the quantal response equilibrium in markets 
in which sellers post prices simultaneously. The laboratory implementa­
tion of this model is commonly called a "posted offer auction." The 
posted offer auction was chosen because laboratory data on such auc­
tions suggest that prices deviate from Bertrand-Nash predictions in a 
systematic manner. In this work, the degree of rationality in the prob­
abilistic choice function is parameterized so that, at one extreme, play­
ers choose randomly, independent of expected payoffs. At the other 
extreme, players always choose the decision with the highest expected 
payoff, as in a conventional Nash equilibrium. Explicit analytical solu­
tions and numerical methods are used to examine the effects of changes 
in market structure on the endogenous price distributions. Although this 
research is mainly theoretical, it is driven by experimental data and has 
clear implications for such data. In particular, there are structural vari­
ables that do not affect the Nash equilibrium but do alter the price 
distribution in a quantal response equilibrium. This observation pro­
vides a natural null hypothesis for experimental analysis. 

This paper is organized as follows. Section 2 contains a more de­
tailed discussion of probabilistic choice and the quantal response equi­
librium. In section 3, a useful parametric class of quantal response 
functions is derived from a model of multiplicative random errors. This 
class of functions is used in section 4 to derive the equilibrium distribu­
tion of prices in posted offer auction markets. Section 5 draws some 
conclusions and outlines some future directions of the present research. 

6 Note that the Nash equilibrium condition, o = 0, does not satisfy (3). 
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2. Equilibrium with Endogenous Errors 

Boundedly rational players have been most commonly characterized by 
either the random choice or the random utility version of discrete or 
quantal choice theory. In the first interpretation the utility is constant but 
the decision rule is random (Luce, 1959; Tversky, 1972a).7 By contrast, the 
second interpretation assumes that utility is random while the decision 
rule is constant (Thurstone, 1927; McFadden, 1984). Hence the two 
approaches can be distinguished according to the interpretation of the 
random mechanism that governs choice. 

To illustrate the random utility interpretation, consider the follow­
ing example. Let the seller's expected payoffs associated with decisions 
1 and 2 be M, and u2, and let the random error term e,. be i.i.d. log 
Weibull with parameter X. Thus, 

Pr(choose 1) = Pr(u] + e, > w2 + e2) 

= Fr(M, - « 2 > e 2 - e,) 

= F(U] - u2) 

7 One criticism of the Luce model (and thus of independence of irrelevant alternati­
ves) is that it may not hold true in situations where the choice is divided in some manner. 
To illustrate this criticism, Debreu (1960) offered the following example. Assume that 
the choice set contains three elements: a recording of the Debussy quartet, D \ a recording 
of a Beethoven symphony conducted by/, B f ; and a recording of the same symphony 
conducted by k, B k . Let U be the entire recording music menu and J be the subset 
containing the Beethoven recordings, i.e., B f and B k . Suppose that a subject selects B f 

with probability 1/2, when presented with [ B k , B f ) , so that these alternatives have the 
same scale values, i.e., u = u B k . Further, when the subject is confronted with either {D, 
B k ] or {D, Bf], D is selected with probability 3/5. From (1), the probability 3/5 implies 
u D = (3/2)nB/= (3/2)« B k . According to the Luce model with these scale values, when 
presented with {£>, B f , B k } , D must be chosen with probability 3/7. Thus when making a 
decision between D and B f , the subject would rather have Debussy. However, when 
choosing between D , B f , and B k , while being indifferent between B,and B k , the subject 
is more likely to choose one of the Beethoven recordings. Debreu concluded that the 
Luce choice axiom is only appropriate when the choice sets have equally dissimilar 
alternatives. Another possible explanation of subjects' incorrect choices is that they are 
due to mistakes in recording decisions, so the addition of "irrelevant" choice alternatives 
can affect choice probabilities. 
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where F(*) denotes a cumulative distribution. McFadden (1984) showed 
that the probability that an individual chooses alternative 1 can be 
expressed in terms of the logistic error function: 

Pr(choose 1)= 1 (4) 
e i + ex 

Notice that A. parameterizes the degree of rationality for the quantal 
response function in (4). If ~k is zero, the individual wi l l choose between 
options 1 and 2 with equal probability, regardless of the expected pay­
offs. If X is »o , the individual wi l l always choose the option with the 1 
higher expected payoff. 

Following McKelvey and Palfrey (1993) a quantal response equi­
librium is a fixed point in choice probabilities. Define n as the set of all 
possible combinations of the expected payoffs for all players in a finite 
normal form game. Let 8 be the Cartesian product of the mixed strate­
gies for all players, and let p be an element of 5, i.e., p specifies a 
particular mixed strategy for each player. Denote the vector of all ex­
pected payoffs as e(p). Thus, e(p) maps a particular array of mixed 
strategies, p , into a vector of players' expected payoffs, n . A discrete 
choice function a maps expected payoffs into a mixed strategy for a 
single player. The function a is assumed to be continuous and mono-
tonically increasing in the payoffs. Let Ta represent the resulting map­
ping from the set of all possible combinations of players' expected 
payoffs to their choice probabilities, T" : n -» 8. 

To summarize, e(p) : 8 -> n maps mixed strategy probabilities to 
expected payoffs, and T° : n -> 8 maps expected payoffs to mixed strat­
egy probabilities. 

The equilibrium is a fixed point: 

DEFINITION 1. A Q u a n t a l Response E q u i l i b r i u m is a p such that 
P = T°(e(p)). 

The Brouwer fixed point theorem implies the existence of such an 
equilibrium, since T"(e(p)) is a continuous function that maps a com­
pact set 8 into itself. 
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3. Power Function Decision Rule 

The Luce framework provides a rather rigid relationship between the 
underlying utilities and the choice probabilities of the individuals. The 
Luce model choice probabilities can be expressed as ratios of expected 
payoffs, rather than utilities, as in (1): 

TC, 
Pr(choose i) = — for i = 1, 2. (5) 

7 C 1 + 7 t 2 

The above expression can be parameterized in a more general form 
that permits an arbitrary degree of bounded rationality, with fully ra­
tional individuals at one extreme. At the other extreme, there is abso­
lutely no connection between expected payoffs and choice probabilities. 
The power-function quantal response equilibrium derived in this section 
generalizes equation (5) by having each expected payoff raised to a 
power. This functional form turns out to be a useful way to model 
decision errors in models of price competition since it often leads to 
tractable solutions and comparative statics results. The power-function 
quantal response equilibrium is based on random utility maximization 
with multiplicative error terms as discussed in section 1. In the power-
function quantal response equilibrium, each player's quantal re­
sponse function wi l l have a power parameter which, when equal to 1, 
yields the Luce model. The parameter, however, can take on any value 
between 0 and ~ . 

For simplicity in exposition assume that a single decision maker 
must choose between two alternatives, 1 and 2. The corresponding 
expected payoffs, n x and TC 2 , are assumed to be strictly positive. Under 
the power function model, the probability of choosing alternative 1 is 
given by: 

nx 
Pr(choose 1)= ' (6) 

where the ratio of expected payoffs is raised to a power X. In (6), X is a 
nonnegative parameter that measures the degree of rationality of the 
individuals. As X goes to 0, the individual chooses each decision with 
equal probability, regardless of expected payoffs. As X goes to ~ , the 
decision with the highest expected payoff is selected with probability 1. 



104 ESTUDIOS ECONÓMICOS 

There are many ways to model the stochastic behavior of the error 
term in the payoff function in (6). Previous research has focused on 
either normally or log Weibull distributed errors, which yield the probit 
and logit decision rules respectively.8 The power function decision rule 
can be derived from random utility expressed as a product: I/. = it,*,, 
where K, . is an identical and independently distributed multiplicative 
error term known to a player, and it. is a nonnegative expected payoff. 
With two alternatives, the probability that a player selects decision 1 is 

Pr(choose l ) = P r ( K l K l > n 2 K 2 ) . (7) 
5 

Making a logarithmic transformation, we have 

Pr(choose 1) = P r i l n n ^ + lmCj > lnjc 2 + lnic 2). (8) 

Let G(*) denote the distribution of K , such that 9 

G(K) = e" ( K ) K e [0, <*>]> A > 0 . (9) 

Define a transformation of the error term: e = InK or K = e\ Substi­
tute e e for K in (9) to obtain the distribution function: 

H(e) = e~e'^ (10) 

which is a log Weibull distribution with parameter X. When an additive 
random utility error, e, is log Weibull distributed, Luce and Suppes 
(1967) have shown that the standard logit decision rule in (4) is derived 
from (10). Since the logarithmic transformation of the multiplicative 
error is additive in the logarithm of JC., the relevant probabilistic choice 
function is the logit formulation with the expected payoff, v., replaced by 
log JC.. Hence 

8 There are a number of other papers that use explicit models of the error structure. 
Logit and probit specifications of the errors in the analysis of experimental data are used 
by Palfrey and Rosenthal (1991), Palfrey and Prisbrey (1993), Stahl and Wilson (1993), 
Anderson (1994), and Harless and Camerer (1994). Zauner (1994) uses a Harsanyi 
(1973) equilibrium model with independent normal errors to explain data from a centipe­
de game reported by McKelvey and Palfrey (1992). 

9 In the analysis that follows, the i subscript is dropped from the error terms since 
the errors are i.i.d. 
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and the logistic choice rule in equation (4) reduces to the power function 
rule in equation (5) of this section. 

To summarize: 

P R O P O S I T I O N 1. If the payoff f u n c t i o n is random and multiplicative, 
it,-KF, with the error terms identically and independently distributed as 
G ( K , - ) = e~ (K/r X, the probabilistic choice f u n c t i o n is the power f u n c t i o n : 
Pr(choose i) = (rc,) V X ( T C / p a r a toda j * i 

4. Market Models 

The laboratory implementation of the Bertrand model is a posted-offer 
auction. In this institution, sellers submit prices simultaneously and then 
randomly designated buyers purchase at the posted prices. The Bertrand-
Nash equilibrium wil l differ from the competitive equilibrium when 
sellers set prices above the competitive level. However, Nash equilibrium 
prices are not often observed in such situations (Holt and Davis, 1990; 
Davis and Holt, 1994 and Brown-Kruse etal, 1994). Certain factors have 
been associated with systematic price deviations from Bertrand-Nash 
equilibrium in posted offer markets: cost structure, low excess supply at 
prices above the competitive price, small numbers of sellers, and market 
power (Davis and Williams, 1990; Wellford etal, 1990; Davis and Holt, 
1994; and Brown-Kruse et al, 1994). 

This section uses the quantal response equilibrium to model behav­
ior in posted offer markets. The objective is to derive testable proposi­
tions about the effects of changes in market structure such as cost 
structure, market power and seller concentration on equilibrium price 
distributions. 

This section is structured as follows: First, the quantal response 
equilibrium is calculated for posted offer markets with severe capacity 
constraint. In these designs, the competitive equilibrium price is the 
Nash equilibrium. An interesting feature of some of these models is that 
the quantal response equilibrium proves to be sensitive to changes in the 
cost and demand parameters that do not affect the Bertrand-Nash equi­
librium. Next, we use the quantal response equilibrium to investigate 
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the effects of market power on equilibrium prices. The Nash equilib­
rium in these markets involves mixed strategies. It is shown that the 
Nash equilibrium in mixed-strategies and quantal response equilibrium 
differ. However, this is not true in general (Lopez, 1995). It is also 
shown, in a more complex market model, that the quantal response 
equilibrium stochastically dominates the Nash equilibrium in mixed-
strategies. Finally, the effects of seller concentration on the quantal 
response equilibrium are examined. 

4 . 1 . A Basic M o d e l with no M a r k e t Power 
I 

We begin with a duopoly model, of the type used in market experiments, 
shown in figure la . Sellers' units are indicated on the market supply 
curve by designations, SI and S2, for sellers 1 and 2 respectively. It is 
assumed that sellers choose prices simultaneously and share demand in 
the event of a tie. A well-known result is that the Bertrand-Nash equilib­
rium is for both sellers to charge the competitive price. In this sense, 
sellers have no market power in this design. 

The quantal response equilibrium for the market design, la , is 
characterized by a price distribution for each seller, F(p). Thus, F(p) is 
the probability that p is the highest price posted. A seller who chooses 
price p sells the unit with probability 1 - F(p). The expected profit to a 
seller as a function of p i s 

n ( p ) = p [ l -F(p)] (12) 

In the present market context, the power function decision rule with 
\ > 0 results in the following condition for a quantal response equilib­
rium, as shown in appendix I: 

fip) = i P [ l ~ F ( P ) ] ) , (13) 

u = J (41 - F ( x ) ] f d x , 
o 

where u is a constant, independent of p . The above equation parameter­
izes the set of possible equilibrium response functions /(p) with the 
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Figure 1 
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parameter X, which is inversely related to the level of error. For X < 1, the 
equilibrium price distribution is 

l 

with the corresponding equilibrium price density: 

(14) 

X + 1 
1 X (15) 

r 

b 

52 
I 
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It is shown in appendix I that, as X goes to 1, all the mass of 
probability is concentrated on the set of prices near 0. This result is 
appealing, since the model thereby accounts for systematic deviations 
from the Bertrand-Nash equilibrium. 1 0 

4.2. A Basic M o d e l with M a r k e t Power 

Consider a more complex market model, figure lb, where each seller has 
1 unit with a low cost denoted by a and 1 unit with a high cost denoted 
by b, with a < b < r . Here r is the reservation price. The market demand 
is rectangular with 4 units demanded for prices below r. The intersection 
of the high marginal cost with demand determines the range of competi­
tive prices, [ b , r]. The Nash equilibrium is the highest competitive price, 
r, as shown in lb and l c of figure 1, where l c is characterized by zero 
costs, as in l a . Clearly, a seller posting a price above r earns 0 profits, 
while a unilateral price reduction does not increase sales. When demand 
is divided equally at the Nash price, each seller sells 2 units. 

Although the market designs lb and l c may share identical Nash 
equilibria, in empirical experiments different median prices were ob­
served. Since the quantal response equilibrium price distribution is typi­
cally sensitive to factors that do not affect the Nash equilibrium, it might 
be able to explain this experimental result. We next compute the quantal 
response equilibrium for the market design in lb. The calculation in­
volves two parts, distinguished by the relation of price to the high cost, 
b. Note that for any p below the high cost step, b, both sellers sell 1 unit 
with probability l . so 

n(p) = ( p - a ) , for pe [ a , b) (16) 

Similarly, both sell 2 units for prices above the high cost step b: 

n(p) = ( 2 p - b - a ) , for pe[b,r] (17) 

For any given X > 0, the power-function conditions for a quantal 
response equilibrium are: 

1 0 As noted in appendix II, when X> 1, one quantal response equilibrium is the 
degenerate distribution F(p) = 1 for p > 0. 
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( p - d f 
for p e [ a , b) 

J l p - b - a ) ^ f m (18) 

Notice that the densities in (18) must integrate to 1. Hence u is written as 
b 

(19) \i = \{x-afdx + \{2x-b-a)xdx 

Integrating the densities in (19), we have 

for p E [ a , b) ( p - a ) . 
F(P)= .. - + k . \ i ( k + 1) 

(20) 

where ^ and k2 are the constants of integration. Note that F(a) = 0 
implies k{ = 0. The constant k2 is chosen so that F ( b ) + = F{by. It follows 
from (20) that k2 = ( b - a ) l + l / 2 \ i ( X + 1). The constant u is next deter­
mined. First, consider the upper bound p . Equation (18) implies that the 
probability density is 0 for/? > r since the expected payoff is 0 for prices 
in this range. Therefore it must be the case that F(r) = 1. Substituting this 
result back into (20) evaluated at p = r and using the formula for ky it can 
be shown that u = [(2r - b - a ) l + 1 + (b - a ) x + ] ] / 2 ( X + 1). Substituting 
the formula for u. back into (20), it follows that the equilibrium prob­
ability functions are written as: 

F(p) 

F(p)-

2 { p - a ) x+ 1 

( 2 r - a - b) x+ 1 { b - a f ITT' f o r P e [a' b^> 

( 2 p - b - a f + i + ( b - a ) x + i 

for p e [ b , r] 
( 2 r - a - b ) l + ì + ( b - a ) k + i ' 

with the corresponding equilibrium probability densities: 

2 { p - a ) \ X + \ ) 

(21) 

(2 b ) x + 1 + (b ) x + ' ' 
for p € [ a , b) 



110 ESTUDIOS ECON6MICOS 

2(2p - b - a ) x ( X + 1) 
fip) = — — , , T— r . f o r /> e [&> r (22) 

( 2 r - b - a ) x + l + ( b - a ) x + 1 

It follows from equations (21) and from the definition of ji that equations 
(22) satisfy the quantal response equilibrium conditions in (18). A s X 
goes to 0, F[p) goes to (p - a ) / ( r - a), which is a uniform distribution 
resulting from maximal decision error. Next we apply L'Hopital's rule to 
evaluate (21) as X goes to ~ . Differentiating both parts of the fraction in 
(21) with respect to X, for p e [ a , b ) , it can be shown (Lopez, 1995), that 
as X goes to <*>, F(p) goes to 0 and all of the probability is on the upper 
price range, where the Nash equilibrium is located. Applying L'Hopital's 
rule and hence differentiating both parts of the fraction in (21) with 
respect to X for p € [ b , r] it can be shown that F(p) still goes to 0 as X goes 
to o o , and the price distribution converges to the Nash equilibrium price 
of r. 

Another interesting property of this model is that a change in the 
cost structure does not alter the Nash equilibrium as long as b remains 
below r. However, a change in the cost parameters may alter the price 
distribution in a quantal response equilibrium. Next, we examine how 
changes in the cost parameters affect the quantal response equilibrium. 
As before, each price range must be considered separately. For 
p e [ a , b ) , the first partial derivatives of F(p) in the top part of (21) with 
respect to a and b are: 

3F(p) 2(X + 1 )(p - a ) \ ( 2 r - b-a)x(p -2r + b) + ( p - b)(b - a ) x ] 

3a ~ [ ( 2 r - a - b ) x + l + ( b - a ) x + ^ ] 2 < 

for p € [a, b) 

dFjp) 2{X + \ ) { p - a ) x + 1 [ ( b - a ) x - ( 2 r - b - a ) x ] 
db ~ [ { 2 r - a - b ) x + x + ( b - a ) x + l ] 2 > 

for p e [ a , b) 

where the inequality claims are verified below. The sign of the equation 
23(i) is negative i f p - 2r + b < 0 and p - b < 0, which is true since 
p<b and b<r. Thus, an increase in a decreases F(p). The sign of the 
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equation 23(h) is positive since ( 2 r - b - a) > b - a , or equivalently, 
r > b. Hence, an increase in b increases F(p) on [ a , b ) . 

For p e [ b , r], the first partial derivative of F(p) with respect to 
a is 

= [2(X + l ) [ ( b - a ) x [ ( 2 r - a - b)\b - r ) + (2p-b- a ) x ( p - b)] 
da L v m u y ^ 

+ ( 2 r - b - a ) \ 2 p -b- a ) x ( p - r)] /to < 0 for p e [ b , r) (24) 

where the denominator of (24) is given by 

co = [ ( 2 r - a - b ) ( b - a ) x + ' } 2 

The sign in equation (24) is negative if the following is true 

( 2 r - a - b)\b - r ) > { 2 p - a - bf(p - b ) , for p e [ b , r) 

( 2 r - a - ¿0 
(p~b) 

2 p - a -
V 

b 
J 

> b-r 
V J 

(25) 

Notice that (2r - a - b)/(2p - a - b) > 1 in (25) since r > p . On the other 
hand, the term (p - b)/(b - r) is always negative since p > b and r > b. 
Therefore, an increases in a decreases F(p) on [ b , r). The first partial 
derivative of F(p) with respect to the high cost unit b yields 

^p- = [2(X + l ) [ ( b - a ) \ ( 2 r - a - b)\r - a) + (2p - b - a ) \ a - p ) } 

+ ( 2 r - b - a ) \ 2 p -b- a f i p - r)]/co > 0 for p e [b, r) (26) 

The sign in equation (26) is positive i f 

( 2 r - b - a ) x / ( 2 p - a - b ) x > ( a - p ) / ( r - a ) 

Since r > p and p > a , it follows that the left hand side of the inequality 
is positive, and the right hand side is negative. Therefore, an increase in 
b increases F(p) in (26). 

In summary, the models presented in this section are characterized 
by the fact that the Nash equilibrium is unaffected by changes in the 
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cost structure as long as b remains below r. For the quantal response 
equilibria, an increase in the low-cost step stochastically raises prices in 
the whole range of prices. Thus, sellers in a quantal response equilib­
rium post stochastically higher prices when they face an increase in the 
low-cost step. B y contrast, an increase in the high-cost step raises 
the distribution function for the whole range of prices. Hence, sellers 
post stochastically lower prices given an increase in the high-cost step. 
The intuition behind this last result is that an increase in b reduces 
profits for the second unit that is only sold at prices above b, which 
causes sellers to post stochastically lower prices in a quantal response 
equilibrium. 

4.3. M a r k e t Power and Constant Costs with Continuous Prices 

The market model in 2a of figure 2 illustrates the situation when there is 
excess supply and the Nash equilibrium involves randomization. To 
understand how randomization may arise, consider the duopoly model in 
2a. Each of the 2 sellers has the capacity to supply 2 units at 0 cost. The 
market quantity demanded is 3 units at any price less than or equal to 1, 
and 0 at any price above 1. Assume that sellers split the market in the case 
of ties. Further, suppose that only two prices can be posted. For example, 
if seller 1 offers 2 units at a price of 0 and seller 2 posts a price equal to 
1/2, buyers would like to buy from seller 1. This seller wil l sell two units, 
netting a profit of 0. Seller 2 will face a residual demand of 1 unit and 
wil l net 1/2. Hence each seller has a unilateral incentive to raise price above 
a common competitive price of 0. 

The Nash equilibrium wil l involve randomization.1 1 Given seller 
2's capacity constraint, seller 1 can always obtain a safe payoff of 1 by 
charging the price of 1 and selling to the residual demand. For seller 1 to 
be indifferent between posting some arbitrary price p and the limit price 
1, it must be the case that seller 2 prices according to a distribution F(p) 

1 1 As can be verified, there is no equilibrium in pure strategies. There is randomiza­
tion over the set of prices (1/2,1). For instance, if seller 1 posts a price of 1, seller 2's best 
response is to slightly cut this price and sell the 2 units. Then, seller l's best response is to 
cut this price. This Edgeworth cycle of best responses continues until the price falls to 
1/2. At this price, the expected payoff from selling one unit equals the expected payoff 
from selling 2 units at the price of 1. 
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Figure 2 

Prices 

Demand 

P 

i 
Supply 

SI S2 SI S2 
1 1 1 3 

Units 

2a. Market Power and Constant 
Costs with Continuous Prices 

Supply 

Units 

2b. Market Power and Constant 
Costs with Integer-valued Prices 

that makes seller l 's expected earnings at p equal to certain earnings in 
the charges 1. When seller 1 chooses a price of p , he has the highest price 
with probability F(p) and the lowest price with probability 1 - F(p). 
Therefore, seller 1 sells 1 unit with probability F(p) and 2 units with 
probability 1 - F{p). Hence the expected profit function for a seller as a 
function of p i s 

n ( p ) = P F ( p ) + 2 p [ \ - F ( p ) } . (27) 

In a mixed strategy Nash equilibrium, seller 1 must be indifferent among 
all prices over which randomization occurs. Hence, the distribution 
F(p) must equate the expected profit at eachp in the support [ p , p], to the 
certain profit of 1. The resulting equation yields 

F(p) = 2 - - , mixed Nash equilibrium (28) 
P 

with the corresponding probability density 

/ ( p ) = 4 
p 

(29) 
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Next, we determine the upper and the lower bound of the price distribu­
tion. Notice that no price above the reservation price wil l be charged 
since the payoff to a seller is zero. From (29), the boundary condition 
F ( p ) = 0 implies that p = 1 / 2 

" In the analysis that follows, the Nash equilibrium is generalized to 
incorporate decision errors. First note that the expected profit in (27) 
can be expressed: n i p ) = p [ 2 - F(p)]. Therefore, the power-function 
quantal response equilibrium condition is: 

fip) ~ ~ F(P))] 

: J [x(2 - F(x))]xdx (30) 

As before, u is a constant independent of p . Before deriving the quantal 
response equilibrium price distribution, it is worth pointing out one 
interesting property of (30). By substituting (28) into the right side of 
(30), it follows that a quantal best response to the other seller's Nash 
equilibrium in mixed-strategies is the uniform distribution, l / | x . This is 
because the expected profits are equal at all prices in a mixed-strategy 
Nash equilibrium. Hence, if the rival is using his Nash equilibrium, the 
seller's best response is to spread price decisions uniformly. This result 
shows why the quantal response equilibrium and Nash distribution can­
not be the same when the Nash mixed distribution is not uniform to begin 
with. 

To derive F(p) in (30), we integrate from 0 to some p* to obtain 

P— i/o (31) 
Jo [ 2 - F ( p ) f o It 

Let c = F(p) and dc =f{p)dp. As p goes from 0 to p \ c goes from 
F(0) = 0 to F{p*). Assuming X * 1,1 2 

i iF(p*} i l p * 
- [ 2 ~ c ] _ _ | = P + I. ( 3 2 ) 

1 - X 0 u (X+l ) 0 

1 2 If X = 1, the same method provides an explicit solution. The derivation of the 
price distribution is provided in appendix 2. 
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Equation (32) can be expressed as 

[2 - F(p*>] 2 1 - x 
- 0 

l - X l - X 

To simplify the notation letp denote p* and rearrange: 

(33) 

[2 - F(p)) \-x. 2 1 - X (1 ^) 

It follows from (34) that the price distribution is 

(34) 

F(p) = 2 - 2 i - i _ (1 ~ ^) x + l 
H(l + A) 

l -x 
(35) 

The next task is to determine \i. The boundary condition, F( l ) = 1, 
implies that the term in square brackets in (35) is equal to 1. Hence, 
\l = (1 - A ) / ( l + X)(2l ~ x - 1) Thus, replacing \i in (35) yields the power-
function equilibrium distribution: 

F(p) = 2 - [ 2 ] - x - ( 2 i ~ x -
]_ 

l -x (36) 

which makes it possible to calculate the quantal response equilibrium, 
QRE. The corresponding equilibrium density is 

(2 1 - x \ ) { X + \ ) P X 

(1 - A,) 
r 2 i - x _ 2 i - x - D / + 1 ] + 111 - X (37) _ 

It can be shown using (36) and the definition of \i that the density in 
(37) satisfies the equilibrium condition in (31). As X goes to 0, F(p) 
goes to p and prices are uniformly distributed. 

By comparing equations (28) and (36) it can be verified that the 
Nash equilibrium distribution at the lower bound of the price support, 
F N ( l / 2 ) = 0, is less than the quantal response equilibrium distribution, 
F e ( l / 2 ) . Therefore, consider the possibility that the Nash equilibrium 
distribution, F N ( p ) , stochastically dominates (in terms of first degree 
dominance) the quantal response equilibrium, F Q ( p ) , or equivalently, 
F N ( p ) < F Q ( p ) . From equations (28) and (36), F N ( p ) < F Q { p ) implies 
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1 /p > [21 - \ 1 - p x + 1 ) + p x + 1 ] 1 ' 1 - \ Raising both sides of the inequal­
ity to the power 1 - X yields p l ~ 1 > [21 - p l + ') + p%+']. Dividing 
by p x ' 1 and arranging terms we have 1 > p l -x2l ~ x ( l -pl+^) + p 2 . A s 
X goes to 1, the r ight hand side of the inequal i ty goes to 
2(1 - p 2 ) + p 2 = 2 - p 2 , which is greater than 1 for p e (0, 1). Thus, the 
Nash equilibrium does not stochastically dominate the ORE . 

4.4. M a r k e t Power and Constant Costs with Integer- Valued Prices 

We next examine the quantal response equilibria for the market design in 
2b of figure 2. In laboratory experiments the set of allowable price 
decisions often is finite (e.g., pennies). In what follows, the mixed-strat­
egy Nash equilibrium for integer-valued prices is calculated. The equi­
librium expected payoff, 5, must satisfy (38) below. This equation is 
similar to the one for the continuous case. However, this equation also 
accounts for the payoff function that determines earnings when a seller's 
price matches the other's price. At this price, demand is divided equally, 
so each seller earns the average profit: [(2p - a - b) + (p - a ) ] / 2 . The 
density, /(p.), is the equilibrium probability that a price selected is p . , 

f ( p ) > 0,fox p . = p y r. 

S = 
p r p \ 

( P t - a ) + f ( p J 
l ( 2 p k ~a-b) + (p - a ) ] 

1 - I / ( P ; ) (2p-a-b) (38) 

wherep =p ,r Equation (38) can also be expressed as 

f ( P k ) 

P = P . 

( P k - a ) + 1-
f ( p t ) 

p = p , 

(2p.-a-b) (39) 

k-

2 
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The G { P k ) in equation (40) is a modified "distribution function", 
that allows for the event of ties: 

V l f ( P , ) (2p.-a-b)-S 
G ( P J = Y f( P ) + - r - = — 7 , (40) 

2 p - b 

In order to obtain the support of the equilibrium mixed-strategy 
Nash equilibrium, consider a set of consecutive integer-valued prices: 
[pv ... , r], where r is the largest price. Define p L and p H as the lowest 
and highest prices respectively that are selected with strictly positive 
probability, where P l < p L < p H < r. By evaluating (38) at p„ and using 
the fact that the sum of the densities up to f ( p H ) equals one, one obtains 

(2pH - a-b) + (pH - a ) 
S = [ l - f ( p H ) ] ( p H ~ a ) + f ( p H ) 

= (pH-a) + —^-[pH-b] • (41) 

Since f ( p H ) > 0, r > p H and r > b , it follows from (41) that 
S > p H - a. Now, we calculate the mixed equilibrium probabilities for 
this model. For example, suppose that a = 0, b = 4 and r = 9. Suppose 
that f ( p k ) = (r - b)/(b - p k ) 2 , with the upper bound p H = 9 and the lower 
bound p L = 7, is a Nash equilibrium in mixed-strategies. In equilibrium, 
the seller must be indifferent between the prices 7, 8 and 9. Next, we 
verify that the seller has no incentive to deviate by choosing an outside 
price with positive probability. Using equation (39) and the assump­
tion, fipk) = ( r - b ) / ( b - p k ) 2 , one can show that S1 = Ss = Sg » 9.16. 1 3 

The e q u i l i b r i u m probabi l i t ies are: f { l ) = 5/9, /(8) = 5/16 and 
/(9) = 5/25 The equilibrium distribution function that results is 
G(7) = 5/9, G(8)= 125/144 and G(9) = l . The mixed-strategy Nash 

1 3 These three calculations are: 

fO) 

57 = [(2 * 7 - 4 - 0) + (7 - 0)]+[l -/(7)](2 * 7 - 4 - 0), 

58 = /(7)[8 - 0] +4pf(2*8 - 4 - 0) + (8 - 0)] + [1 - f ( l ) - f ( % ) } ( ! * 8 - 4), 

59 = U O ) + /(8) + - 0) - (2 * 9 - 4)) + (2 * 9 - 4). 
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The Nash and QRE price distributions are illustrated in figure 3. In 
this figure the distribution functions are indicated in the vertical axis, 
while prices are represented in the horizontal axis. The quantal response 
equilibrium is plotted for different error rates. The upper and lower 
bound of the mixed-strategy Nash equilibrium is 9 and 7 respectively. 
The figure shows that, in the QRE , as the error rate, \/X, decreases the 
reservation price of 9 becomes more probable. In the Nash equilibrium, 
however, a price of 7 is a more probable outcome. With respect to the 
equilibrium strategies, it is interesting to note that F Q ( p ) dominates 
stochastically F N ( p ) , in terms of first degree dominance, or equivalently, 
F Q ( p ) < F N ( p ) . This means that sellers are posting stochastically higher 
prices in a Q R E , than in the mixed-strategy Nash equilibrium. 

4.5. Seller C o n c e n t r a t i o n 

Next we examine the QRE in the presence of a change in seller concentra­
tion. This structural variable is another factor that has been associated 
with systematic deviations from the Bertrand-Nash equilibrium in 
posted-offer markets (Holt and Davis, 1984). 

Consider a generalization of the baseline model introduced at the 
beginning of this section to the case of N sellers. As before, each seller 
has 1 unit to sell at a zero cost. The quantity demanded is 1 unit for all 
prices less than or equal 1. A well known result is that for N > 2, where 
N is the number of sellers, the Bertrand-Nash equilibrium is to set price 
equal to marginal cost. 

Now consider the calculation of the quantal response equilibrium. 
When a seller charges p it may be that p is the smallest price being 
posted. This happens only i f the other sellers charge prices higher than 
p , an event which has probability [1 - F ( p ) ] N ~ l . Therefore, the expected 
profit of the seller is 

n(p) = [l - F ( p ) ] N ~ l p (46) 

In the present market context, the power-function decision rule 
implies that the choice probabilities must satisfy: 

f { p ) _ ( p U - F ( p ) l N - ' t 
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r1 « , , 
= j ( 4 i - F ( * ) r - ' r i f a 

Equation (47) can be expressed as 

f i p ) 
[1 - F(p)] i(/V - \ ) X 

(47) 

(48) 

It can be shown (Lopez, 1995) that the probability price distribution is 
l 

F(P)= 1 
(1 + X - NX) , + , 1 p 

+X) 

l + X - N X 

(49) 

where a is a constant to be determined. The boundary condition, 
F ( l ) = l , implies that ix = (1 + X - XN)/(X + 1). The quantal response 
equilibrium price distribution is 1 4 

F(p) = 1 - [1 -pl+ ' ] i 

with the corresponding equilibrium price density: 

(50) 

f(p)-
X + l 

- X + X N 

l + X - X N 
p \ \ _p»-+i]i+>.-wv (51) 

Next we examine the effect of the number of sellers, on the endo­
genous equilibrium price distribution. The partial derivative of (50) 
with respect to/Vis 

^F _ 1 + X - N X 

Equation (52) is expressed as follows 

x +1. 

l n ( l - / + 1 ) 
(52) 

3F 
dN 

' — — £ \ + x - — ln(l - p ) g 
dN 

1 
l + X - N X 

ln(l -px+l) (53) 

_ 

1 4 From (47), a QRE for ( \ / N ) - 1 > X is the degenerate distribution F(p) = 1 for 
p > 0 . 
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Rearranging, the partial derivative of F(p) with respect to N is 

M P (1 + \ - N \ f ' 

The logarithm in (54) is negative since p e (0, 1). Therefore, as N in­
creases the price distribution, F(p) increases, and price declines stochas­
tically. 

To summarize: 
As the number of sellers, N, increases, the power-function price 

e q u i l i b r i u m increases. T h u s , given a n increase i n N, sellers post sto­
chastically lower prices. 

5. Conclusions and Outline of Future Work 

Observed patterns of behavior for both game theory and industrial or­
ganization experiments reveal systematic deviations from the Nash equi­
librium. A variety of factors have been associated with systematic price 
deviations in laboratory markets: the rules of the market, low excess 
supply at prices above the competitive price, and few sellers ( Smith, 
1978; Davis and Williams, 1990; Wellford et al, 1990). The approach 
used in this paper is the quantal response equilibrium, which incorporates 
decision error in a way that is clearly spelled out and not ad hoc, using 
elements borrowed from the discrete choice theory of Luce (1959), 
McFadden (1984) and Thurstone (1927). As discussed in section 2, the 
added complexity in applying the quantal response equilibrium to game 
theory — i n contrast to individual choice— is that the choice probabilities 
of the players have an important interactive component, since they are 
simultaneously determined in equilibrium. In a ORE , a player's beliefs 
about others' actions wi l l determine the player's own expected payoffs, 
which in turn determine the player's choice probabilities via a quantal 
response function. The model is closed by requiring the choice prob­
abilities to be consistent with the initial beliefs. Closed-form or analytical 
solutions for equilibrium price distributions with endogenous errors were 
derived in simple models of price competition. 

The main finding of this paper is that the quantal response approach 
is consistent with the higher-than-competitive prices observed in 

file:///-N/f
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posted-offer markets. Specific conclusions for the models analyzed in 
this paper include: 

a) With severe capacity constraints, the quantal response equilib­
rium predicts systematic departures from the Bertrand-Nash equilibrium 
for finite error parameters, and convergence to the Nash equilibrium as 
the errors vanish. Accordingly, the model is able to account for the 
systematic price deviations observed in past experiments. 

b) With severe capacity constraints and increasing costs, it is shown 
that in the QRE, sellers post stochastically higher prices when they face 
an increase in the low cost parameter. By contrast, the Nash equilibrium 
is unaffected by changes in the cost parameters as long as the high cost 
parameter is below the reservation price. 

c) With market power and constant costs, it is shown that the Nash 
equilibrium in mixed-strategies and the QRE differ. Specifically, prices 
tend to be lower in the QRE regardless of whether prices are discrete or 
continuous. 

d) With market power and increasing costs, the quantal response 
equilibrium stochastically dominates the Nash equilibrium (in terms of 
first degree dominance). 

e) A well known result is that for N > 2, where N is the number of 
sellers, the Bertrand-Nash equilibrium is to set price equal to marginal 
cost. However, in a quantal response equilibria, an increase in the num­
ber of sellers generates a stochastic decrease in prices which may not 
converge to the Nash equilibrium. 

The theoretical results obtained in this paper are motivated by styl­
ized patterns in experimental data and will be used to suggest designs 
for further experiments. Even though one important feature of the ap­
proach derived in this paper was its simplicity we would like to outline 
some extensions of the approach and give directions for further research. 

One extension is to apply the quantal response equilibrium to 
posted-offer experimental data. The posted-offer triopolies conducted 
by Holt and Davis (1990) are especially interesting since the observed 
median prices for the first 15 market periods reveal systematic devia­
tions from the Bertrand-Nash prediction. As a first step, these market 
models were examined using numerical methods. In these simulations 
prices tend to be 12% higher than the Nash equilibrium. The next step in 
this research wil l be a statistical analysis of the data, using standard 
maximum likelihood techniques in a structural model incorporating QRE, 
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Another extension is to examine ultimatum bargaining games in which 
there are decision errors in the buyer's purchase choices. There is a 
large experimental literature that documents systematic deviations from 
the Nash equilibrium in bargaining games. Systematic deviations in these 
games have been attributed to perceptions of fairness, focalness, and to 
random "errors" (Prisbrey, 1994). In principle, it is not difficult to 
extend the model to allow for buyer's decision errors. However, further 
work is needed in order to determine whether the model can predict 
systematic price deviations in ultimatum experiments. Another promis­
ing direction is to account for price choice decisions under horizontal 
product differentiation, in which the "error" rate is a measure of location 
or differentiation. Experimental evidence shows that in a Hotelling 
duopoly model, sellers' prices did not converge to the Nash prediction. 
In fact prices seem to be higher with greater distance between firms, 
even when different locations have identical Nash equilibrium (Brown-
Kruse, 1989). The QRE is well-suited to explain such deviations since 
structural variables (such as distance) affect the equilibrium price distri­
bution but typically do not affect the Nash equilibrium. Under product 
differentiation, however, the quantal response equilibrium condition be­
comes a complex second-order nonlinear differential equation in the 
price distribution. Therefore performance of the model may be based on 
simulations. 
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Appendix 1 

In the present market context, the continuous power function rule implies 
that the choice probability density must satisfy (13), where the density is 
proportional to expected profit raised to a power X: 

f ( p ) = cp[i - ( 5 5 ) 

J (x[l - F(x)]fdx 
o 

Let |x denote the denominator of the right hand side of (55), which 
is a constant independent of p . Thus 
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(56) 

Equation (56) is a nonlinear differential equation that can be used to 
determine the distribution, F(p). The main result is given in the next 
proposition: 

PROPOSITION 2. T h e price density 

f(P) = yz{pXV-PX+l~l~ (57) 

F o r X e [0, 1), equation ( 5 7 ) is a power-function q u a n t a l response 
e q u i l i b r i u m . 

PROOF: Notice that equation (13) can be expressed as 

— = —̂- (58) 
[ l - F ( p ) ] u 

Integrating both sides of equation (58) from a nonnegative p a to 
some p* > p a , we have 

rP* ftp) (P* p x 

K a [ l - F ( p ) ] x d p = \ a J d P ' ( 5 9 ) 

Making a change of variables on the left hand side of the above integral 
and defining c = F(p) and dc =ftp)dp, this becomes 

(60) 

Note that the lower bound of the power-function price distribution 
must be zero because negative prices produce no profits, which contra­
dicts the power function QRE in (13). Thus i f p = 0, c = F(0) = 0. As p 
goes from 0 to p \ c goes from 0 to F(p*). Assuming X * 1, equation (60) 
can be integrated: 
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[l -c\ i _ p i 
1 - X 0 \ i ( k + 1) 0 

equation (61) also yields 

[ 1 - F Q p ) ] ' - * 1 
1 - X l - X u (A+l ) 

Simplifying the notation, we obtain 

[ l - F ( / > ) ] ' - x = l - ( 1 X ) p k + 1 

or equivalently, 

1 - F(p) = 
H(l+X) 

l 
i - x 

The price probability function is given by 

(61) 

(62) 

(63) 

(64) 

F ( p ) = l i _ -x+i 1 - x. (65) 

where H is a constant to be determined. Note that the lower boundary 
condition, F(0) = 0, is satisfied. The other boundary condition, F( l ) = 1, 
in turn implies that u = (1 - X ) / { \ + X) > 0. Thus replacing X in (65), one 
obtains the power function cumulative probability: 

F(p) = l - [ l 

The corresponding price choice probability is 

X + 1 
f(P) 1 - X 

/ [ l „x+ 111 - x 

(66) 

(67) _ 
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It follows from (66) and from the definition of \i that the density in 
(67) satisfies the equilibrium condition in (13). As X -» 0,ftp) ^ 1, and 
the distribution of prices becomes the uniform distribution. Recall that 
the Nash equilibrium price is zero in this Bertrand model. The ORE in 
(67) therefore, produces systematic departures from the Nash equilib­
rium with p > 0 , even though the expected value of the error term is 0. 
The proposition below shows that the power function equilibrium price 
distribution,/^), captures the extent to which a player's behavior devi­
ates from the Nash equilibrium zero price outcome. 

To summarize: 

PROPOSITION 3. As the error rate decreases, X - * l , t h e power f u n c t i o n 
cumulative probability converges to the Nash e q u i l i b r i u m : F(p) -> 1 for 
a l l p > 0 . 

PROOF. We need to show that, for any p value, [1 - p 0 + ^^~^ j n 

equation (66) vanishes as A-> 1. Consider X < 1 and notice that 
p ( l + X) > p 2 f o r a l l p e (0, 1), so 1 -p<-l + X ) < 1 - p 2 < 1. Hence 

Since 1 - p z < 1 and the exponent, 1/1 -X, goes to °° as X -> 1, it follows 
that[l _ p ( i + » - ) ] i / i - * converges to 0. Therefore F(p)-> 1. 

Now consider X > 1. The power-function quantal response equilib­
rium condition in equation (13) implies that a QRE is the degenerate 
distribution F(p) = 1 for p > 0. • 

Appendix 2 

For X = 1, the power function quantal response equilibrium condition 
becomes 

[1 - p ( 1 + X )] 1/1 - x < [ l - p 2 ] l / l - \ 

(68) 

This equation can be also arranged as follows 

(69) 
( 2 - F ( p ) ) u.' 
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The above equation can also be expressed as 

3 ln(2 - F(p)) = -R- (70) 
V-

Integrating from 0 to some p \ we have 

J 3 ln(2 - F(p)) = f - L (71) 
o o It 

Equation (71) yields the following result: 

ln(2 - F(p*)) = - (72) 

To simplify the notation let p denote p \ It follows from the above 
equation that the price distribution is 

2 

F(p) = 2[\ -e 2»]- (73) 

The next task is to determine u. The boundary condition, F(l) = 1, 
implies that u. = - 1/(2 * ln(l/2)). 



î 


