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Resumen: Mientras la matriz de Slutsky y la teoría de la dualidad 
se han utilizado para demostrar que las funciones de 
demanda con elasticidades constantes implican: elasti
cidades de renta unitarias, elasticidades cruzadas de la 
demanda nulas y elasticidades directas iguales a menos 
uno; esta nota demuestra que estos resultados se pueden 
obtener también directamente suponiendo simplemente 
que se verifica la ecuación de balance con estricta igualdad. 

Abstract: While the Slutsky matrix and duality theory have been 
used to establish that constant elasticity demand func
tions imply unitary income elasticities, zero cross-price 
elasticities and own-price elasticities equal to minus 
one, this note shows that these results can also be stright-
forwardly derived from the simple assumption that de
mand functions satisfy the budget constraint with strict 
equality. 

1. Introduction 

The easy simplicity of the elasticity concept and the fact that elasticities 
are pure numbers have led economists to see their estimation as a primary 
aim of empirical studies. In econometric studies of consumer demand it 
has long been a common practice to assume that demand are elasticities 
constant. While this simple assumption facilitates the parametric estima
tion of demrnd elasticities (since it means that the underlying demand 
functions must be log-linear), it also imposes restrictions upon the mag
nitude of the elasticity values.1 Slutsky equations, as well as duality 

1 Pareto (1911, pp. 613-616) was early in pointing out that the Marshallian constant 
demand curve is inadmissible, except in the special case when elasticity is unity. 
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theory, have been used to fully describe the framework within which such 
demand funtions are consistent with the theoretical restrictions implied 
by the theory of consumer choice. In particular, it turns out that income 
elasticities will be unitary, the own-price elasticities will be equal to - 1 , 
and the cross-price elasticities will all equal to zero, see, e.g., Basmann 
et a l . (1973), Dimasi and Schap (1985), Samuelson (1965), and Willig 
(1976). The purpose of this note is to show that these results can also be 
derived by simply assuming that demand functions satisfy the budget 
constraint with strict equality. 

2. Implications of Constant Elasticities of Demand 

Let the standard neoclassical twice-differentiable demand functions be 
x . = x . ( p , y ) , where x . denotes the quantity demanded of the ith good 
(i = I , ... , it), p = (pj, ... , p n ) is a vector representing the prices, and y 
is the consumer's income. Then, 

n 

i = 1 

and 
n XS.= 1, (2) 

!= 1 

where S. stands for the relative share of the ith good in total income 
(expenditure), i . e., S. = x.p./y (i = 1, ... , ri). 

Next, denote the'elastic'ity of the ith good with respect to price p . by 
r\.. and with respect to income by r\iy. Then, since demand functions are 
homogeneous of degree zero in prices and income, Euler's theorem 
allows us to write the aggregation condition 

n 

5>.- = - V d = U . . . , n ) (3) 
./'= i 

first derived by Slutsky (1915), and then by Hicks (1937) and Schultz 
(1938) from the second order conditions for utility maximization. Notice 
that (3) establishes 
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PROPOSITION 1. If all c r o s s - p r i c e e l a s t i c i t i e s of d e m a n d of a c o m m o d i t y 
v a n i s h , then its o w n - p r i c e d e m a n d e l a s t i c i t y i s n u m e r i c a l l y e q u a l t o i t s 
i n c o m e elasticity. 

On the other hand, partial differentiation of (1) with respect to p . 
yields, after some manipulations, Cournots aggregation condition 

n 

£S.r , . . = - S . , ( 7 = 1 , ... ,n) (4) 
i = 1 

which can also be written as 

n 

V c ^ - - S(r\ +1) ( i = 1 n) 
f t ; ' ~ ' " ""' 

from which we have, 

PROPOSITION 2. If t h e c r o s s - d e m a n d e l a s t i c i t i e s of all goods w i t h respect 
t o a g i v e n p r i c e pj are a l l z e r o , then the o w n - p r i c e d e m a n d e l a s t i c i t y of 
t h e j t h g o o d must be - 1. 

Finally, by partially differentiating (1) with respect to y , we get the 
Engel aggregation condition2 

n 

^Sp = 1 . (5) 
i = i 

We now present the following theorem: 

T H E O R E M 1. If t h e p r i c e e l a s t i c i t i e s of d e m a n d f o r a g o o d are all c o n s t a n t , 
then the c r o s s - p r i c e d e m a n d e l a s t i c i t i e s a l l v a n i s h and the o w n - p r i c e 
d e m a n d e l a s t i c i t y equals m i n u s one. 

PROOF. By assuming that x[i} constant, and noting that 
dSi/dpj = S i / p j ( T ) i j + 8y), where 8,-, is the Kronecker symbol (i. e., 
&ij = 1, if i = j , and 5. = 0, if / * j ) , partial differentiation of (4) with 
respect to P j yields 

2 Notice that (2), (3) and (4) imply (5). 



76 ESTUDIOS ECONÓMICOS 

n 

X S.(TI..)2 + S.(y\.. + l ) 2 = 0, (j = 1, ... , n) (6) 
i* 1 

which, for S. > 0, implies r\ = - 1, and T|.. = 0 (/ * J ) . • 

C O R O L L A R Y 1. / / t h e p r i c e d e m a n d e l a s t i c i t i e s are c o n s t a n t , t h e n t h e 
i n c o m e d e m a n d e l a s t i c i t i e s become unity. 

PROOF. This follows immediately from theorem 1 and proposition 1. 

T H E O R E M 2. If t h e i n c o m e e l a s t i c i t i e s a r e a l l c o n s t a n t , t h e n they must 
all be e q u a l to 1. 

PROOF Using (2), (5) can be rewritten as 
n 

IS - ( % - D = O, 

;= l 
whose partial differentiation with respect to y , assuming r\. = constant, 
and noting that,3 dS. /dy = S. / y(r| - 1 ), gives * 

n 

^Sfy\.y- 1)2 = 0, (7) 
;= l 

which implies ri. y = 1 (/ = 1, ... , ri) U 

T H E O R E M 3. If t h e p r i c e d e m a n d elasticity of a g o o d is independent of 
i n c o m e , t h e n t h e good's i n c o m e elasticity is a l s o independent of p r i c e , 
and v i c e - v e r s a . 

PROOF. Since 
8TI.. p d z x . i 

dy x d p d y y '« W 

and 

3 Incidentally, this derivative indicates the tautology of Engel's law, according to 
which the proportion of income devoted to necessary goods (0 < -n,. < 1) decreases as 
income increases, while the opposite holds for luxury goods (n,- > 1)'* See, for example, 
Derycke (1964, pp. 129-130), and Wold and Jureen (1953, pp. 323). 
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3%- yd2*/ _ 1 

we have the duality relation 
3ri 3n. 
31ny ain/j.' 

which establishes that 

3T).. 3TI. 

V L = ° « V Z = 0
 (¿ ,7=1,2 , . . . ,«) 

3y 3p 

C O R O L L A R Y 2. (i) If the p r i c e demand e l a s t i c i t i e s of a g o o d are a l l 
independent of the i n c o m e , t h e n the g o o d ' s income elasticity is c o n s t a n t , 
(ii) If t h i s holds f o r all goods, t h e n i n c o m e e l a s t i c i t i e s are all unity. 

PROOF, (i) is immediate from theorem 3 and the aggregation condition 
(3); (ii) then follows directly from theorem 2. 

3. Conclusions 

In econometric studies of consumer demand it has long been postulated 
that demand elasticities are constant. This simple assumption facilitates 
the estimation of demand elasticities in parametric form because, as first 
noted by Moore (1926), demand functions must then be of the form4 

n 

x r A . y % Y l p ^ , (¿ ,7=1,2, . . . ,«) (8) 
7 = 1 

and taking logarithms leads to the log linear representation: 
n 

\nx. = InA. + ii lny + ti £ Inp. (i = 1, 2, ... , n) 
7= 1 

However the assumption of constant demand elasticities also im
poses severe restrictions upon the own elasticity values. In this note we 
have shown that without resorting to duality theory or the integrability 

4 A similar specification was used in Wold and Juréen (1953, pp. 3, 105). 
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conditions, and by simply assuming that demand equations satisfy the 
budget constraint with strict equality, r\iy = 1, ̂ ¡ ¡ = - 1, and T).. = 0 for 
i * j . Substitution of these results into (8) gives us the correct form of 
the underlying demand function 

x . = A . y p - x (9) 

or, arranging, x.p./y = A , where A . = constant, 0 < A . < 1, and 
n I I I I I 

X = 1. Notice that (9) simply says that the expenditure on each com-
mArlitv is constant fraction r\f thf* K n H c r p t W i t h t h i c f n p t \r\ m i n H thf* moauy is a constant rraction oi me ouuget. wun tnis lact in minu, ine 

potential gains in estimation from choosing constant elasticities in em 
pineal demand works must then be balanced against the rather unattrac
tive structure that this assumption imposes on the underlying demand 
function. Of course, the same conclusions apply input demand functions 
in the theory of production under the formally parallel assumption of cost 
minimization.5 
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