
ON INFORMATION, PRIORS, ECONOMETRICS, 
AND ECONOMIC MODELING 

Francisco Venegas-Martínez 
Centro de Investigación y Docencia Económicas 

Enrique de Alba 
Instituto Tecnológico Autónomo de México 

Manuel Ordorica-Mellado* 
El Colegio de México 

R e s u m e n : Se busca reconciliar aquellos métodos inferenciales que a 
través de la maximización de una funcional producen dis­
tribuciones a p r i o r i no-informativas e informativas. E n 
particular, las distribuciones a p r i o r i de Evidencia M i n i ­
max (Good, 1968), las de Máxima Información de los Datos 
(Zellner, 1971) y las de Referencia (Bernardo, 1979) son vistas 
como casos especiales de la maximización de un criterio más 
general. Bajo un enfoque unificador se presentan las distri­
buciones a p r i o r i de Good-Bemardo-Zellner, que aplicamos 
en varios métodos de inferencia Bayesiana útiles en inves­
tigación económica. Asimismo, utilizamos las distribuciones 
de Good-Bernardo-Zellner en varios modelos económicos. 

A b s t r a c t : This paper attempts to reconcile al l inferential methods 
which by maximiz ing a criterion functional produce n o n -

i n f o r m a t i v e and i n f o r m a t i v e priors. In particular, Good ' s 
(1968) M in imax Evidence Priors, MEP , Zel lner 's (1971) 
M a x i m a l Data Information Priors, MDIP, and Bernardo's 
(1979) Reference Priors, RP, are seen as special cases of 
maximiz ing a more general criterion functional. In a unify­
ing approach Good-Bernardo-Zel lner priors are introduced 
and applied to a number o f Bayesian inference procedures 
which are useful i n economic research, such as the Ka lman 
Filter and the Normal Linear Mode l . W e also use the Good-
Bernardo-Zellner distributions in several economic models. 

* We are indebted to Arnold Zellner, José M . Bernardo, Jim Berger, George C. Tiao, 
Manuel Mendoza, and David Mayer for valuable comments and suggestions on earlier drafts 
of this paper. The authors bear sole responsibility for opinions and errors. 

E E c o , 14, 1, 1999 53 



54 ESTUDIOS ECONÓMICOS 

1. Introduction 

The distinctive task in Bayesian analysis of deriving priors so that the 
inferential content of the data is minimally affected in the posterior distribu­
tion, has been of great interest for more than 200 years since the early work 
of Bayes (1763). More current approaches to this problem, based on the 
maximization of a specific criterion functional, have been suggested by 
Good (1969), Zellner (1971) and Bernardo (1979). 

When modeling economic systems or conducting empirical research, 
prior information from previous research or from our knowledge of eco­
nomic theory is always available. In either case, the estimates of the pa­
rameters of a regression model or the estimates of the time-varying 
parameters of a state-space model can usually be improved by incorporat­
ing any information about the parameters beyond that contained in the 
sample. In this work, we provide a broad class of priors that are l ikely to be 
useful in a variety of situations in economic modeling. 

The principle of maximum invariantized negative cross-entropy is in­
troduced in Good's (1969) minimax evidence method of deriving priors. 
There, the initial density is taken as the square root of Fisher's information. 
Zellner (1971) presents, for the first time, a method to obtain priors through 
the maximization of the t o t a l information about the parameters provided by 
independent replications of an experiment (prior average information in the 
data minus the information in the prior). Bernardo (1979) proposed a proce­
dure to produce reference priors by maximizing the expected information 
about the parameters provided by independent replications of an experiment 
(average information in the posterior minus the information in the prior). 

A l l of the above methods have certain advantages: 
i ) Whi le Zellner's method is based on an exact finite sample criterion 

functional, Good's approach uses a l imiting criterion functional, and Ber­
nardo's procedure is based on asymptotic results. In Bernardo's proposal a 
reference prior (posterior) is defined as the limit of a sequence of priors 
(posteriors) that maximize finite-sample criteria. Many reference prior al­
gorithms have been developed in a pragmatic approach in which results are 
most important. See, for instance, Berger, Bernardo and Mendoza (1989), 
and Berger and Bernardo (1989), (1992a), (1992b), Bernardo and Smith 
(1994), and Bernardo and Ramon (1997). 

i i ) The criterion functional used by Bernardo is cross-entropy, which 
satisfies a number of remarkable properties; in particular, it is invariant 
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with respect to one-to-one transformations of the parameters (Lindley, 
1956). In contrast, the total information functional employed by Zellner is 
invariant only for the location-scale family and under linear transforma­
tions of the parameters. Addit ional side conditions are needed to generate 
in variance under more general transformations. 

Hi) The way in which these methods have been tested is by seeing how 
wel l they perform in particular examples. 

The evaluation is often based on contrasting the derived priors with 
Jeffreys' (1961), usually improper, priors which are somewhat arbitrary and 
inconsistent. In fact, there are cases in which one can strongly recommend 
avoiding Jeffreys' priors. See, for instance: Box and Tiao (1973), p. 314; 
Aka ike (1978), p. 58; and Berger and Bernardo (1992a), p. 37. 

In this paper, we attempt to reconcile all inferential methods that pro­
duce n o n - i n f o r m a t i v e and i n f o r m a t i v e priors. In our unifying approach, 
M in imax Evidence Priors (Good, 1968 and 1969), Max imal Data Informa­
tion Priors (Zellner, 1971, 1977, 1991, 1993, and 1995) and Reference 
Priors (Bernardo, 1979 and 1996) are seen as special cases of maximizing 
an indexed criterion functional. Hence, properties of the derived priors wi l l 
depend on the choice of indexes from a wide range of possibilities, instead 
of on a few personal points of view with ad h o c modifications. In the spirit of 
Aka ike (1978) and Smith (1979), we can say that this w i l l look more l ike 
Mathematics than Psychology —without denigrating the importance of the 
latter in the Bayesian framework. This unifying approach wi l l enable us to 
explore a vast range of possibilities for constructing priors. Needless to say, 
a good choice w i l l depend on the specific characteristics of the problem we 
are concerned with. It is worthwhile mentioning that our general method 
extends Soofi's (1994) pyramid in a natural way by adding more vertices 
and including their convex hull . 

This paper is organized as follows. In section 2, we wi l l introduce an 
indexed family of information functionals. In section 3 we wi l l state a 
relationship between Bernardo's (1979) criterion functional and some 
members of the indexed family, on the basis of asymptotic normality. In 
section 4, we w i l l study a Bayesian inference problem associated with 
convex combinations of relevant members of the proposed indexed family. 
Here, we w i l l introduce the Good-Bernardo-Zellner priors and their c o n ­

t r o l l e d versions as solutions to the problem of maximizing discounted 
entropy. We w i l l pay special attention to the existence and uniqueness of 
the solution to the corresponding optimization problems. In section 5, we 
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wi l l study the Good-Bernardo-Zellner priors as Kaiman Filtering priors. In 
section 6, we w i l l apply Good-Bernardo-Zellner priors to the normal linear 
model, In section 7, we apply Good-Bernardo-Zellner priors to a variety of 
situations in economic modeling. Finally, in section 8, we present conclu­
sions, acknowledge limitations, and make suggestions for future research. 

2. An Indexed Family of Information Functionals 

In this section, we define an indexed family of information functionals and 
study some distinguished members. For the sake of simplicity, we w i l l 
remain in the single parameter case. 

Suppose that we wish to make inferences about an unknown parameter 
6 6 0 c 1R of a distribution P 9 , from which an observation, say, X , is 
available. Assume that />e has density/(JC I 9) (Radon-Nikodym derivative) 
with respect to some fixed dominating a-f inite measure X on 1R for al l 
6 e 0 c JR. That is, d P d / d X = f ( x I 9) for all 9 e 0 c 1R and thus P Q ( A ) 

= J f ( x I Q)dX(x) for all Borel sets A e JR. 
A The Bayesian approach starts with a prior density, 7t(9), to describe 

initial knowledge about the values of the parameter, 9. We w i l l assume that 
71(9) is a density with respect to some a-finite measure u on IR. Once a 
prior distribution has been prescribed, then the information about the pa­
rameter provided by the data, x is used to modify the initial knowledge, via 
B a y e s ' theorem, to obta in a poster ior d i s t r ibut i on of 9, namely, 
/(9 I x ) «c/(jt I 9)7i(9) for every in JC e IR (We use/generically to represent 
densities). The normalized posterior distribution is then used to make infer­
ences about 9. 

Let us define an infinite system of nesting functionals (cf. Venegas-
Martinez,1997): 

K « . 8 ( 7 t )
 = J " ( 6 )0 ( ^ (8 ) . m 7- « , 8 )4 i (9 ) , (2.1) 

where 

G ( / ( 9 ) , F { Q ) , y, a , 8) = 
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0 < Y < l , a e {0, l } , 8 e {0, l } , and 

I ( e ) = J ± l o g f ( X \ Q ) \ f ( x \ Q ) d M x ) (2.2) 

is Fisher's information about 9 provided by an observation X with density 
f ( x I 9), and 

is the negative Shannon's information of f ( x I 9), provided 1(9) and R 8 ) 
exist. In the case that n independent observations of X are drawn from Pg, 

say, ( X V X 2 , . . . , X n ) , then 1(9) and F(6) w i l l still stand for the average 
Fisher's information and the average negative Shannon's information of 
f ( x I 9), respectively. It is not unusual to deal with indexed functionals in 
inference problems about a distribution; see Good (1968). 

In particular, note that for the location parameter family 

with the properties j [ f ' ( x ) ] 2 / f ( x ) d k ( x ) < ~ and j f ( x ) l o g f ( x ) d k ( x ) < 

where X. = u. stands for the Lebesgue measure, both 1(9) and R 9 ) are constant. 
Observe also that the scale parameter f ami l y/ ( * I 9) = (1/9)/(JC/8), 9 > 0, 
with the above properties, satisfies the following relationship between F(9) 
and 1(9): 

Throughout this paper, we wi l l be concerned with the following in­
dexed family: 

A = c o n v [ { V y a 5 ( n ) } ] = convex hull of the closure of the family 
i K , a , 5 ( 7 t ) } . 

We readily identify a number of distinguished members of A : 

( i ) Criterion for Max imum Entropy Priors, M A X E N T P : 

R Q ) = i f ( x \ Q ) l o g f ( x \ Q ) d M x ) (2.3) 

/ ( ^ ! 9 ) = / ( x - 9 ) , 9 e IR, 

P(6) = y logI(9) +constant. (2.4) 

K o . . ( « ) = - J«(e)io gK(e)4i(9), 
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which is just Shannon's information measure of a density jt(6), or Jaynes' 
(1957) criterion functional to derive maximum entropy priors. Notice also 
that (2.3) can be rewritten in a simpler way as F(9) = - V Q Q 1 ( f ( x \ 0)). 

( i i ) Criterion for M in imax Evidence Priors, MEP : 

which is Good's invariantized negative cross-entropy, taking as initial den­
s i t y p ( Q ) = C [1(6) ] 1 / 2 w i t h C = { j [ I ( Q ) ] l / 2 d i x ( Q ) r l , p r o v i d e d that 
j " [ I (0) ] 1 / 24i(9) < oo. We can also write (2.5) as: 

K i , i W - K o, i ( « ) = J « ( 6 ) log [i(e)]' / 2^(0). (2.6) 

( H i ) Criterion for Max ima l Data Information Priors, MDIP: 

V 0 0 0(7t) = j j f ( x ) f ( 0 \ x ) log ^ d i i i Q ) d X ( x ) , (2.7) 
' ' 71(9) 

which is Zellner's criterion functional. Here, as usual, 

f ( e \ X ) =/<*' 9>*( 9 ) , f ( x ) = S f { x \ Q ) n ( e ) d m , 
f i x ) 

and /(6bc) = f ( x \ Q ) is the likelihood function. A n alternative formulation of 
(2.7), which is useful, is given by 

K o, o(*) - K o, M ) - i m w ) d m . (2.8) 

Some other members of A define new criterion functionals in which the 
information provided by the sampling model, 1(9), plays an important role: 

( i v ) Criterion for Max ima l Modif ied Data Information Priors, MMDIP: 

V o , l , o W = [ f / W / W l o g [ / ( e ' ^ ( e ) d m d X ( x ) , (2.9) 

which is the prior average information in the data m o d i f i e d by Fisher's 
information minus the information in the prior. Note that when 1(9) is 
constant, (2.9) reduces to Zellner's criterion functional (up to a constant 
factor). 
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( v ) Criterion for Max ima l Fisher Information Priors, MFIP: 

71(0) 
(2.10) 

which is the prior average Fisher's information minus the information in the 
prior. 

3. Revisiting Bernardo's Reference Priors 

The maximization of Bernardo's (1979) criterion is usually difficult. In order 
to obtain a simpler alternative procedure under specific conditions, we w i l l 
derive a useful asymptotic approximation between Bernardo's criterion 
functional (or L indley 's information measure, 1956) and some members of 
the class A . A s stated in Bernardo (1979), the concept of reference prior is 
very general. However, in order to keep the analysis tractable, we wi l l restrict 
ourselves to the continuous one-dimensional parameter case. 

Suppose that there are n independent observations, X v X 2 , . . . . X n , from 
a distribution P6, 6 € 0 ç JR. Accordingly, the random vector ( X v X 2 , X n ) , 

has density d P e / d v = / © 9 ) = J { x k \ Q ) for all t, = ( x v x 2 , ...,*„) and 
all 9 e 0 ç jR, where 

P e = P 9 ® P 9 <g> ... <8>Pe and v = \® X® ... ®X 

Fo l lowing L ind ley (1956), a measure of the expected information 
about 9 in a sampling model/^IG) provided by a random sample of size n , 

when the prior distribution of 9 is TC(9), is defined to be 

In order to obtain an asymptotic approximation of (3.1) 'in terms of 
V t l , and V 0 0 v we state a l imit theorem which justifies the passage of the 
l imit under the integral signs in (3.1). The theorem rules out the possibility 
that the e s s e n t i a l s of the statistical model, / (£19), change when samples 
grow in size. Let us rewrite (3.1) as: 

~n 

• * i n \ n ) - i m i / m l o g ^ ^ d m d v { % ) . 
7t(ü) 

(3.1) 
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[ ( T (<O)W (co) - T ( e o ) W œ ) £ 0; (3.2) 
liol > n \^ J 

( I X ) T h e s e q u e n c e o f r a n d o m v a r i a b l e s { l o g i / „ }~ = , w h e r e 

Un = j r„(co)Wn(co)4i(co) satisfies 

l im sup J WogUn\dP = 0, (3.3) 
e - > ~ n > l Hogt/„l>E 

/>{£, e A , 9 e B ] = ¡n(B) \ f (%\Q)dv(\)d\i(Q) (3.4) 

f o r a l l A G l R n a n d B G 0 . 

77*en, a i n —» °°, 

«¿<">(ic) - V , ,(71) = - V 0 o ,((p) + l o g C <n~ + 0(1), (3.5) 

wfcere q>(z) ü r te density o/Z ~ W(0, 1), and C is taken as in ( 2 . 4 ) . 

Some comments are in order: (I)-(IV) are standard regularity condi­
tions, (V) states desirable properties for 1(6), (VI) is a bounded variance 
condition, (VII) is a smoothness condition, (VIII) is a convergence condi­
tion, and (IX) says that the sequence {log <y„}~ =, is uniformly integrable 
with respect to P. 

It can be shown (details can be found in Venegas-Martinez, 1990a) 
that (I)-(VI) lead to 

r„(to) 4 e x p { œ V 7 ( ë ) [ Z - | c o V 7 ( ë ) ] } , (3.6) 

where Z ~ N (0, 1), and (3.6) along with (VII)-(IX) imply 

log Un = log J rn(co)W„(co)4i(co) 4 log V2TC/7(0) + y Z 2 -

The conclusion of the theorem follows. Note that the right-hand side of 
(3.5) is independent of 7t. Thus, i f conditions (I)-(LX) are fulfilled, instead 
of max im i z ing «4M(TC), wh ich is usually dif f icult, we can maximize 
V , , ,(71), which is independent of « . Note that for maximization purposes 
the right-hand side of (3.5) becomes a constant. 
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Finally, it is worthwhile to note that the location parameter family 
f(x\G) = f ( x - 0), with # W absolutely continuous in R , and 

In this section, we introduce Good-Bernardo-Zellner priors as solutions to 
the problem of maximizing convex combinations of elements of A . We 
emphasize the existence and uniqueness of the solutions to the correspond­
ing variational problems. 

Very often, priors exist for which entropy becomes infinite, especially 
when dealing with the non-informative case. To overcome this difficulty, 
we propose the concept of discounted entropy and introduce Good-Ber­
nardo-Zellner c o n t r o l l e d priors as solutions to the problem of maximizing 
discounted entropy. 

Throughout this section, we w i l l discuss a number of Bayesian infer­
ential problems associated with convex combinations of distinctive ele­
ments of A . We begin considering 

Clearly, M,,, (TC) e A . To see that M 0 (TC) is concave with respect to re, it 
is enough to observe, as in Zellner (1991), that 

K o, o f a W ) = ^ H n m + V 0 0 ,(70(9)) - V 0 0 ,(/(*)), 

is the sum of concave functions with respect to TC (up to the constant 
K n ,(/(*))). Since V. . ,(7i) is concave with respect to TC, M.(TC) is also 
concave with respect to'TC! * 

Usually, in the absence of data, s u p p l e m e n t a r y information, in terms 
of expectations about the parameter, comes from additional knowledge of 
the experiment, or from the experience of the researcher, namely, 

¡[f'(x)]2/f(x)dk(x)< 

fully satisfies the conditions of Theorem 3.1. 

4. Good-Bernardo-Zellner Priors 

def 

0 < ¡ , ) V o . ° - o ( 7 t ) ' 

J a¿(9)7i(6)4i(9) = a k , k = 1, 2 , s , (4.1) 
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where both the functions a k and the constants a k , k = 1, 2 , s , are known. 
Hereafter, we w i l l assume that (4.1) does not lead to any contradiction with 
respect to 7t(6). 

In the rest of the paper, we w i l l leave out the details in deriving the 
necessary conditions for the maximization problems. These conditions fol­
low from very standard results in calculus of variations and optimal control 
(see, for instance, Kamien and Schwartz, 1991). 

PROPOSIT ION 4.1. C o n s i d e r t h e G o o d - B e r n a r d o - Z e l l n e r p r o V ' - - : 

M a x i m i z e M^TC) ( w i t h r e s p e c t t o i t ) 

s u b j e c t t o e. f ̂ (6)71(0)41(6) = a^ k ~ 0 , 1, 2, s, a Q = 1 = a Q . 

T h e n a n e c e s s a r y c o n d i t i o n f o r a m a x i m u m is 

S 

rc;(9) - [I (0)]4>/2 e x p { f l - W F ( 0 ) + £ k k a k ( B ) } , (4.2) 
* = o 

w h e r e 1 ^ k = 0, 1, .... s, a r e the L a g r a n g e m u l t i p l i e r s a s s o c i a t e d w / ' h e 

c o n s t r a i n t s e ( c f . Z e l l n e r , 1 9 9 5 ) . 

Note that when no supplementary information is available, 7^(0) is 
appropriate for an unprejudiced experimenter. Otherwise it wi l l be suitable 
for an informed experimenter who is in favor of # Observe also that n*(0) 
is a Good-Bernardo prior, and 7t*(0) is a Zellner prior. In particular, consider 
the Bernoull i distribution, '/(jrfG) = 9*(1 - 0) 1 ~ x , 0 < 0 < 1. In such a case, 
Ti*(6) = e- 1 / 2 (1 - 0 ) ~ I / 2 and iC0(<d) = 0 9(1 - 0 ) ' - e for 6 e [0, 1], which are 
quite different. 

C O R O L L A R Y 4 . 1 . C o n s i d e r the l o c a t i o n a n d s c a l e p a r a m e t e r f a m i l i e s , 

/(xie) = f ( x - 6), 9 e IR, a n d f ( x \ Q ) = ( 1 / Q ) f ( x / Q ) , 6 > 0, r e s p e c t i v e l y , 

b o t h s a t i s f y i n g j [ f ' ( x ) ] 2 / f ( x ) d X ( x ) < o 0 a n d \ f ( x ) \ o g f ( x ) d X ( x ) < ^ . 

T h e n , G o o d - B e r n a r d o a n d Z e l l n e r p r i o r s a g r e e r e g a r d l e s s of the v a l u e 

o/(j> e (0, 1), 

It is important to point out that when there is no supplementary infor­
mation, we require u (9 ) < °°. O f course, the parameter space 0 can have 
limits as wide as needed to include the range where the likelihood for 0 is 
relevant. 
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Note that Proposition 4.1 can be used recursively when there is addi­
tional supplementary information, say 

1^(0)70(0)41(8)=^, k = s + l , s + 2 , . . . , t . (4.3) 

In this case, using a cross-entropy formulation (Kullback 1959), we take 
(4.2) as the initial density, and (4.3) as the additional information. Hence, 

TtJiG) - [Key^expUl - <t,)F(G) + £ \ a k ( Q ) } e x p { X X ^ Q ) } 

* = 0 k = s + l 

= [I(0)]*/ 2exp{(l - <t>)F(8) + £ X A ( 6 ) } . 
i = 0 

To deal with the (local) uniqueness of the solution to the problem 
stated in Proposition 4.1, we rewrite the constraints, C, as a function of the 
multipliers in the form A ( A ) = [ |at(0)Tc;(8)4i(8)]^=o = A , where 

A T = ( a 0 , a , a,), A T = ( X 0 , X v X s ) 

and T denotes the usual vector or matrix transposing operation. 

PROPOSITION 4.2. L e t TCI(0) be as in (4.2), and suppose t h a t a k , k = 0 , l , s , 

are l i n e a r l y i n d e p e n d e n t c o n t i n u o u s f u n c t i o n s in L 2 [ 0 , n l 41], the space 

of a l l TCI d \ i - m e a s u r a b l e f u n c t i o n s a(B) defined on Q such that la (8) l 2 is 

7t! d \ i - i n t e g r a b l e . S u p p o s e t h a t A ( A ) is d e f i n e d o n a n o p e n s e t 

A <= + l , a n d l e t A 0 , be a s o l u t i o n t o A ( A ) = f o r a fixed v a l u e of 

A = A 0 . T h e n t h e r e exists a n e i g h b o r h o o d of A Q , N ( A Q ) , in w h i c h A 0 is 

the u n i q u e s o l u t i o n t o A ( A ) = A 0 in N ( A 0 ) . 

The proof follows from the fact that A(A) is continuously differentiable 
in A , with nonsingular derivative A ' ( A ) = [ j a l ( Q ) a l ( Q ) n ^ Q ) d \ l ( Q ) ] o < i ; < s -

and from a straightforward application of the inverse function theorem (cf. 
Venegas-Martinez, 1990a). 

From (4.1) we may derive the following necessary condition, which is 
useful in practical situations. 
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PROPOSIT ION 4.3. T h e m u l t i p l i e r s A T = (X0, X , , X ç ) a p p e a r i n g in ( 4 . 2 ) 

satisfy t h e f o l l o w i n g n o n - l i n e a r s y s t e m of s + 1 e q u a t i o n s : 

\ = X + log 

1 = X 0 - l o g ä j f c + log 

k = 1 

k = 1,2, . . . ,s. 

M o r e o v e r , 

( i ) if t h e i n t e g r a l i n t h e first e q u a l i t y h a s a c l o s e d - f o r m s o l u t i o n , 

t h e n t h e r e s t of t h e m u l t i p l i e r s c a n b e f o u n d f r o m t h e r e l a t i o n s : 

d X 0 

— - = 5 „ ¿ = 1 , 2 , s, 
d X k

 k 

( i i ) t h e f o r m u l a 

S 

<t>K. !, + o - •)[ v 0 , o, <,(*;> - 2 K o, i ( « p ] = 1 - X \ % 
k = Q 

h o l d s f o r a l l O < $ < 1. 

Very often, researchers are concerned with assigning weights d k , 

k = \ , 2 , s to regions A k , k = 1 , 2 , s , to express how likely it is that 6 
belongs to each region, based on past experience. The following result, 
based on Proposition 4.3, characterizes Good-Bernardo-Zellner priors 
when such supplementary information comes in the form of quantiles, and 
both 1(6) and F(6) are constant. Under these assumptions, the non-linear 
system of s + 1 equations given in Proposition 4.3 is transformed into an 
homogeneous linear system of the same dimension as shown below: 

PROPOSITION 4.4. Suppose t h a t the sets A k = ( b k , b k + ,], k = 1, 2, s - 1 
a n d A s = ( b s , b s + x ) w i t h b l < b 2 < ... b u + v u > 2 , c o n s t i t u t e a p a r t i t i o n of 

9 , 0 < (1(0) < oo. Suppose a l s o t h a t b o t h 1(6) a n d f { Q ) a r e c o n s t a n t . L e t 

a v a 2 , d s > 0 b e s u c h t h a t ^ a k = 1, a n d \ l A (6)71(6)^(6) = a h 

¿ = 1 , 2 , s. If we define n e w m u l t i p l i e r s : " 
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©„ = e 1 " V D where D = [ 1 ( 0 ) ] ^ ^ ~ •>»», 

and w k = e\ k = \ , 2 , . . . , s . Then, Q. = ( (0 Q , co,, m) can be f o u n d f r o m 

the f o l l o w i n g h o m o g e n e o u s l i n e a r system: 

- 1 " l u 2 . 
s 

f \ 

0 ( 0 ) 

- 1 0 . . 0 0), 0 

- 1 0 . 0 = 0 

- 1 0 0 V (Ú 0 
V S 

J V J l J 

(4.4) 

where u k = \ i { A k ) , and vk = a ~ l u k , k = l , 2, s. 

Observe that the determinant, A, of the matrix in (4.4) is given by 

A : 
X V 1 

*= i 

*=i 

n « 
*=i 

which guarantees that there exists a unique nontrivial solution since 
J H = l a k = l . In this case, the solution is (1, \ v~2 v ; ' ) , and 
K = Tl= A ' 7 A ( c f Venegas-Martinez, 1990b, 1990c, and 1992). 

The fol lowing proposition extends the Good-Bernardo-Zellner priors 
to a richer family by using the MMDIP and MFIP criteria: 

PROPOSIT ION 4.5. L e t 

\ V(TC)=F 4) V , , ,(TC) + (1 - 0X1 - V ) V 0 0 0(7C) 

+ ( V ( i - < t » / 2 ) [ V 0 , , + y 0 1 0 ] 

0<<j>, \\i< 1. Then 
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( i ) (TC) e A a n d is c o n c a v e with r e s p e c t t o %. 

( i i ) A n e c e s s a r y c o n d i t i o n f o r n t o be a m a x i m u m of the p r o b l e m 

M a x i m i z e 

s u b j e c t t o & \ ^(6)71(6)41(6) = a^ k = 0, 1, 2,..., s, a Q s 1 = a f f 

is g i v e n by 

n l , v ( 6 ) 0 0 [KSW^exp j i l - d)) (1 - v|/) f ( 6 ) 

2 
1/2 

1/2 
* = 0 

(4.5) 

where \ , k = 0,1,.... J are the Lagrange multipliers associated with the 
constraints £ 

The second term inside the exponential of (4.5) is the average between 
Fisher's information and the negative relative Shannon-Fisher information. 
Note that TCJ 0(6) is just the Good-Bernardo-Zellner prior. 

In the fol lowing proposition, Good-Bernardo-Zellner type priors are 
derived as M A X E N T P solutions by treating (2.5) and (2.8) as constraints (for 
the rationale of M A X E N T P methods see Jaynes 1982). 

PROPOSIT ION 4.6. C o n s i d e r the J a y n e s - G o o d - B e r n a r d o - Z e l l n e r p r o b l e m : 

M a x i m i z e V 0 0 ,(7t) 

s u b j e c t t o : . V 0 0 0(TC) - V 0 0 ,(TC) = b 2 , 

1^(0)71(6)41(6) = ^ , t = 0, 1,2,..., j , a0s\=â0. 

T h e n a n e c e s s a r y c o n d i t i o n f o r a m a x i m u m is 

71*0) « tI(6)]P/ 2exp{p 2F(6) + X V * ( e ) } > 
k = 0 

(4.6) 
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where p., j = 1, 2, a n d \ , k = 0, 1, s, a r e t h e L a g r a n g e m u l t i p l i e r s 

a s s o c i a t e d with t h e c o n s t r a i n t s . 

Unl ike the coefficients 4» and 1 - « ) appearing in (4.6), the multipliers 
p j y j = 1, 2, do not necessarily add up to 1. 

Typically, priors exist for which the Shannon-Jaynes entropy becomes 
infinite. One way to remedy this situation consists in discounting entropy at 
a constant rate v > O.Thefol lowingproposit ionintroducesGood-Bernardo-
Zel lner control led pr iors as solutions to the problem of max imiz ing dis­
counted entropy. 

PROPOSIT ION 4.7. C o n s i d e r the d i s c o u n t e d v e r s i o n of the p r o b l e m s t a t e d 

in the p r e c e d i n g p r o p o s i t i o n : 

M a x i m i z e - j e~ V6TC(9) log 7t(9)4t(9), 

s u b j e c t t o : 

i d h , ( Q ) 

Ai(°°> = K , , , ( « ) - M>, o,i 

' 1 d h J Q ) 
= F(9), h J - °°) = 0, hJ°°) = Vn n n(rc) - V n n A n ) < °°, 

7t(9) 4i(9) 2 2 ° ' a o ° ' a i 

1 d g k ( Q ) 
— = a d d ) , gt(- °°) = 0, g.(°o) < oo, jfc = 0, 1, 2, s 

7t(9) du(9) * S k S k 

where a Q s 1 = a . T h e n , a n e c e s s a r y c o n d i t i o n f o r 7t*(9) t o be an o p t i m a l 

c o n t r o l is g i v e n by 

P,W 

TC*(9) - [1(G)] 2 exp{p 2 (9)F(6) + X y 9 ) a t ( 9 ) } , (4.7) 
* = o 

wrtere p.(9) = p . 0 e v 9 , j = 1 , 2 , a n d X m = X^e™, k = 0, 1 j are the 

c o - s t a t e ' v a r i a b l e s a s s o c i a t e d with the state v a r i a b l e s h ( Q ) , j = 1, 2, a n d 
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g ( Q ) , k = 0 , \ , s, respectively. F u r t h e r m o r e , the constants p.Q, j = 1, 2, 
a n d X , k = 0, 1, s can be c o m p u t e d f r o m the f o l l o w i n g n o n - l i n e a r 

system o f s + 3 e q u a t i o n s : 

1 + log «,(oo) = 

log{J log[I(e)F 2m(p 1 0 ) p m J ^ , X 1 0 , . . . . X J 0 ; 6)41(6)}, 

1 + log n2(oo) •= l og j j R 6 ) m ( p 1 0 > p 2 Q , X m , \ Q , X s Q , 6)4i(8)}, 

1 + log g k M = log {Ja t(9 )m(p 1 0, p 2 0 , A^,, X 1 0 , X j 0 ; 8)4i(8)}, 

¿ = 0 , 1 , 2, j , 

where 

« ( p . o . p20. V ^10. 0 ) = f [ iW] 2 e p » R 9 ) * H I A o ° " ( e ) • 
u= 1 ' 

5. Kalman Filtering Priors 

In this section, we wi l l study Good-Bernardo-Zellner priors as Kalman 
Filtering priors (Kalman 1960, and Kalman and Bucy 1961). We w i l l 
continue to work with the single parameter case, and focus our attention on 
the location parameter family. 

Let Yv Y2,Yt be a set of indirect measurements, from a poll ing 
system or a sample survey, of an unobserved state variable ft. The objective 
is to make inferences about ft. The relationship between Yt and ft is 
specified by the measurement or observation equation: 

y t = A f f t + e f, (5.1) 

where A ( * 0 is known , and £, is the observation error distributed as 
W(0, 0 2) with a 2 known. Note that the main difference between the mea­
surement equation and the linear model is that, in the former, the coefficient 
ft changes with time. Furthermore, we suppose that ft is driven by a first 
order autoregressive process, that is, 
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p > Z , p ( _ , + ! ! , _ „ (5.2) 

where Z * 0 is known, and x\ ~ N ( 0 , a1) with o 2 known. In what follows, 
we wil l 'assume that p e,, and n ( are^ndependent random variables. We 
could state nonlinear versions of (5!l) and (5.2), but this would not make any 
essential difference in the subsequent analysis. 

Suppose now that at time t = 0, supplementary information is given by 
P 0 and a 2 , the mean and variance of p 0 respectively. That is, 

J TC(P 0 ) r fp 0 =l , 

J _ P 0 T C ( P o ) d P 0 = P 0 , 

f ( P 0 - P 0 ) 2 T C ( p 0 ) dp 0 = O 2 . 

(5.3) 

In this case, the Good-Bernardo-Zellner prior is given by 

rc;(p 0) * [ I (p 0 ) ] * / 2 e x p { ( l - <b)F(Po) + \ + M o + M P o " Po) 2 } ' (5-4> 

where X., j = 0, 1, 2, are Lagrange multipliers (cf. Venegas-Martinez e t a l , 

1995, and Ordorica-Mellado, 1995). 
Suppose that, at time t, we wish to make inferences about the condi­

tional state variable e,= P tl/ t, where /,= { Y v Y2 K f_,}. To obtain a 
posterior distribution of 6,, the information provided by the measurement 
Yr with density/(F, I 0 r), is used to modify the init ial knowledge in TC*(0,) 
according to Bayes ' theorem: 

/(0,1 Y t ) o c f ( Y t I e,)TC*,(0,). (5.5) 

We are now in a position to state the Bayesian recursive updating 
procedure of the Kalman Filter (KF) for the location parameter family 
/ ( y , l 0 ) = / ( y , - 0 ) , 0 e R . To start off the K F procedure, we substitute 
(5.4) in (5.3), obtaining the result that the Good-Bernardo-Zellner prior at 
time t = 0, is given by /v(p0, a 2 ) , which describes the initial knowledge of 
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the system. Proceeding inductively, at time f, p , _ , and a j _ , become sup­

p l e m e n t a r y information, and therefore the Good-Bernardo-Zellner prior at 
time t is given by 

e,= f j , l/ , ~ N (Z,p\-p M t ) , (5.6) 

where 

M l ^ Z j a 2 _ l +0-2,,.,. (5.7) 

The sampling model (or l ikelihood function) is determined by 

y, I 9 ( ~ N ( A , p f , o 2 ) . (5.8) 

The posterior distribution, at time t, is then obtained by substituting 
both (5.6) and (5.7) in (5.5): 

/(9,1 Yt) - exp {- j [(A, p r - Y t ) 2 o ~2 + (p, - Z ( p\ _ , ) 2 A/ ~>]}. 

Not ing that TCJ(0() is a natural conjugate prior, it follows that 

Qt\Yt~ N [ Z , p,_ , + ^ ( l 7 , - A , Z, p,_ ,), Af f - K t A , M t ] , 

where 

Af, = A * , A r ( a 2 + A 2 M t ) ~ K (5.9) 

This, of course, means that 

. P r - Z / P r - l + ^ M - A Z f P f - l ) ' (5.10) 
a 2 = M t - A : ( A ( M ( . 

We then proceed with the next iteration. Equations (5.7), (5.9), and 
(5.10) are known in the literature as the KF . The previous analysis can be 
summarized in the following proposition: 
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PROPOSIT ION 5.1. C o n s i d e r the s t a t e - s p a c e r e p r e s e n t a t i o n : 

|P, = Z , P , _ , 

defined as in ( 5 . 1 ) a n d ( 5 . 2 ) . S u p p o s e t h a t s u p p l e m e n t a r y i n f o r m a t i o n 

a b o u t the m e a n a n d v a r i a n c e of P Q is a v a i l a b l e . L e t 9 = 0 I / (, w h e r e 

I , = { Y V Yv .... F ,}, a n d c o n s i d e r t h e l o c a t i o n p a r a m e t e r f a m i l y , 

f ( Y I 9) = f ( Y - 9), 9 e R, a/ong wi in ifte p r o p e r t i e s s t a t e d in C o r o l l a r y 

4 . 1 . T h e n , u n d e r t h e G o o d - B e r n a r d o - Z e l l n e r p r i o r , n \ ( B ) , the p o s t e r i o r 

e s t i m a t e o/P ( , P,, is g i v e n by 

P, = a>,Z, p , _ , + ( l -(û,)(Yt/At), 

w h e r e co, = a 2 ( a 2 + A 2 M ) ~ \ 
t t 

6. Normal Linear Mode 

The results on Good-Bernardo-Zellner priors given so far can be easily 
extended to the multi-dimensional parameter case, namely, 

9 = ( 8 , , 9 2 , 0 J e 8 c R " , m > 1. 

Consider a vector of independent and identically distributed normal ran­
dom variables (X,, X 2 , X n ) with common and known variance o 2 satisfying 

E ( X k ) = a H e i + a k 2 6 2 + . . . + a k m Q m , * = 1 , 2 , n (6.1) 

where A = ( a . ) is a matrix of known coefficients for which ( A T A ) ~ 1 exists. 
Let X and 9 stand for the column vectors of variables X k and parame­

ters 6,, respectively. Then (6.1) can be written in matrix notation as, 
E(X) = A B . In this case, we have 

= ( ^ z " ) " 7 2 e xp { - ll£ - A9II 2 }, (6.2) 

where £ = ( x v x 2 , x n ) . Since a 2 has been assumed known, only the loca­
tion parameter is unknown. The analogue of (2.2) is now given by the matrix: 
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TT-tog/(jtl6) a e , l o g / ( A r l e ) f ( x \ B ) d \ ( x ) 

A < 1,1 < m 

= -hATA (6.3) 

and so det[I (9)] is constant.which implies that the Good-Bernardo-Zellner 
prior distribution TC'O), describing a situation of vague information on 9, 
must be ajocally uniform prior distribution. 

Let 9 be the least squares estimate for 9. Then it is known that 
A T A Q = A T X , E(9) = 9, and Var (9) = a 2 { A T A ) ~ l. Noting from equation (6.2) 
that 

/ ( § 6 ) : 
( 1 ^ 2 

2TCG2 

V J 

2 e x p { - ~~~ (ll£ - A9II 2 + ( A T A ( Q - 9), 9 - 9 ))}, 
2 a 2 

and applying Bayes' theorem, we get as the posterior distribution of 9 

m i ' i i 
/(9I£) = ( 2 n ) ~ 2 ( d e t [ ^ A T A ] ) H x p { - \ ( \ A T A { Q - 9), 9 - 9 )}. 

If supplementary information about the mean, c, and the variance-co-
variance matrix, D , is now incorporated, then the (informative) Good-Ber­
nardo-Zellner prior is given by 

n'Aß) = (2rc)" 2(det[Z>])~2 exp { - j { D ~ \ Q - c), 0 - c ) } . 

The posterior distribution is now 

/(9l£) = (27i)"T(det[S])2 

x exp {- \ < B[9 - ( ( D B ) ^ c + ^ B ~ l A T A Q ) ] 0 

( ( D B ) - i c + J - B - , A T A Q ) ) } , 
a 2 

w h e r e ß ^ D - ' + ^ j A 7 ) ! . 
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7. Good-Bernardo-Zellner Priors in Economic Modeling 

In this section we apply Good-Bernardo-Zellner priors to a variety of 
situations in economic modeling. 

E x a m p l e 7.1 

Let us examine the behavior of an individual who learns about the parame­
ters of her/his utility function under inflation. If we think of the parameters 
as random variables, then the information gained from experience (con­
sumption) is incorporated into a prior distribution. Once a prior is available, 
the agent makes consumption decisions. To illustrate this process, we shall 
borrow some ideas from Calvo (1986). Let us consider a small open econ­
omy with a single infinitely-lived consumer in a world with a single perish­
able consumption good. Suppose that the good is freely traded, and its 
domestic price level, P , is determined by the purchasing power parity condition, 
namely P = P * E , where P* is the foreign-currency price of the good, and 
E is the nominal'exchange'rate. Throughout the paper, we w i l l assume, for 
the sake of simplicity, that P* is equal to 1. We also assume that the 
exchange-rate initial value, E , 'is known and equal to 1. 

The expected utility function of a representative individual at the pre­
sent, t = 0, has the following separable form: 

V = f \ f u { c t ; Q ) e - n d L ( Q ) d Q (7.1) 

where « ( c ; 6) is the utility of consumption; cf is consumption; 6 > 0 is a 
parameter related to the utility index; r is the subjective rate of discount; 
rc(9) is a prior distribution describing initial knowledge of 6 coming from the 
experience of the consumer before t = 0 (the present). 

Let us assume that: 1) the representative individual has perfect fore­
sight of the inflation rate so P/P, = q = qe, that is, she/he accurately per­
ceives the rate at which inflation is proceeding, the value P(0) is assumed to 
be known, 2) there are no barriers to free trade, 3) the international interest 
rate is equal to r, 4) capital mobility is perfect. If i is the nominal interest rate 
then r = i + qe. Denoting income and government lump-sum transfers by y t 

and g t respectively, we can write the consumer's budget constraint, at time 
/ = 0, as 
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«o + l (y + g , ) e - " d t = \ ( c . + i m t ) e - r ' d t , (7.2) 
0 0 

where for the sake of simplicity we have chosen y ; = y = constant. The con­
sumer holds two assets: cash balances, m = M / P , where M is the nominal 

t t t t 
stock of money; and an international bond, £ . The bond pays a constant 
interest rate r (i.e., pays r units of the consumption good per unit of time). 
Thus, the consumer's wealth, a f is defined by 

a t = m t + k t , (7.3) 

where a Q is exogenously determined. Furthermore, we suppose that the rest 
of the world does not hold domestic currency. 

Consider a cash-in-advance constraint of the Clower-Lucas-Feenstra 
form, m t > etc,, where c, is consumption, and a > 0 is the time that money 
must be held to finance consumption. Given that i > 0, the cash-in-advance 
constraint w i l l hold with equality, 

m , = a c , (7.4) 

For the sake of concreteness, let us suppose that u(ct\ 8) = - e~9c. 

Plainly, u c > 0 and u c c < 0. Moreover, let us assume that there is supplemen­
tary information about 6 > 0 in terms of the mean value E[8] = l / X . We 
also assume that 1(8) and F(9) are constant, i.e., before supplementary 
information becomes available, initial knowledge is vague. In such a case, 
fol lowing Proposition 4.1, the Good-Bernardo-Zellner prior is given by 
TC*(8) = e" x e , 8 > 0, and (7.1) can be written as 

V=r\f-e-^ + ^ d d ] e r t d t = f - ( - V l f r ' d t . (7.5) 
Jo [Jo J Jo ct + X 

In maximiz ing (7.5) subject to (7.2) the first-order condition for an 
interior solution is: 

1 = X ( \ + a i ) , (7.6) 
( c + X) 

where X is the Lagrange multiplier associated with (7.2).We assume a 
government budget constraint of the form 
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f g . e - " d t = b 0 + \ ( m t + q m , ) e - r < d t , (7.7) 
0 0 

where b denotes the government's holding of international bonds. Let us 
denote by/ the total bond holding of the economy, i.e., /= k { + b . Then by 
(7.2) and (7.7) we get 

/ 0 + f y e - r ' d t = \ c . e - r ' d t . (7.8) 
o o 

Suppose that expected inflation (depreciation) takes the values q\ in 
[0, T ] and q\ in (T, °°), where T > 0 and q\ < q\. Since X is time-invariant, 
we have 

A / l + q ( r ^ t T 
c 2 = A c i + X ( A - l ) , 0 < A = \ \ + a { r + q l ) < l <7-9) 

where c, is consumption in [0, T ] and c 2 is consumption in (T, «>). 

O n the other hand, from (7.8), we obtain 

which leads to 

c2 = (y + r f 0 ) e r T + c , ( l - e r T ) (7.11) 

The perfect foresight equilibrium consistent with the consumer's opti­
mal decisions and government behavior is the intersection point, ( c p c 2), 
between (7.9) and (7.11). Observe that, in (7.9), a once-and-for-all increase in 
X, which results in a decrease in the mean value, E[8] = 1/X, w i l l decrease the 
value of the intercept, X(A - 1), which in turn increases c,. In other words, 
X reinforces the effect of the rate of time preference. Thus, an increase in X 

causes a rise in present consumption and a fall in future consumption. 

Other possibilities of supplementary information, using the notation in 
(4.1), are listed below. In some cases, however, it might only be possible to 
analyze the equilibrium via numerical methods. 

( i ) If a,(9) = 161 and 5, = cx, c t>0, then the Good-Bernardo-Zellner 
prior is 

1 —i-101 
K * ( Q ) = — e « , 

2 a 
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which is a Laplace distribution. 
( i i ) If 

k ( 9 ) = e 

k(e)=* e 
and 

ä = - - + ß , ß e 1R 
a 

ä, = « p T ( l + - ) 
2 a 

where K is Euler 's constant, then TC*(8) = c x e ^ - ^ e x p } - e a ( f l -P' } , which is 
a Gumbel (or extreme value) distribution. 

( H i ) If 

W9> fl,(9) 

a 2 (0) = 9 

a 3(9) = log9 

and 

« , = 1 

5 2 = | , - a > 0 , ß > 0 

a 3 = \|/(a)-logP 

where7 is the usual indicator function and, as before, V|/(ct) is the p r i 

function, then TC*(9) = ^ (P6) a " 1 pe " p e , which is a Gamma distribution 

(or Erlang distribution, i f a is a positive integer). 
( i v ) If 

a 2 (9) = eP, p > 0 [ and 

fl,(6) = log9 

äj = 1 

ä, = - , a > 0 
2 a 

- K log a 
p ß 

where K is Euler 's constant, then TC*(9) = a P 9 p ~ V 0 * , which'is a Weibull 
distribution. 

E x a m p l e 7.2 

We wi l l develop Good-Bernardo-Zellner interval estimates to test conver­
gence of rational expectations. Consider a simple macroeconomic model 
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We may also write ft as ft = X \ where x , is any martingale, that is, x 

is any stochastic process that satisfies 

E { x l + l \ I , ) = x r 

Therefore, there are infinitely many divergent forward rational expec­
tations solutions. Convergence w i l l require ft = 0 for all t. 

Note now that from successive substitution of (7.13) into (7.14), we 
can show that E , m t + j _ x = p/'m, _ = 0, 1 , a n d therefore (7.14) becomes 

p m , _ , _ g - + p V ; _ 6 

1 - 7 ( 1 - P) K ' 1 - Y 

There are many stochastic processes (bubbles) consistent with (7.15), 
for instance, 

P\+i 

X f t 
— with probabi l i ty q, 0 < q < 1, 

q 
0 with probabi l i ty 1 - q, 

or 

ft+1 = Xf t + r i ( , (7.17) 

where the TI/S are independent Gaussian variables with mean zero and 
variance a 2 . 

We suppose that the ft's are unobserved location parameters satisfying 
(7.17). We also assume that there is supplementary information in terms 
of the two first moments on the in i t ia l (30, namely £{|30}=P0 and 
£{p2} =o2+ pg. Then, according to Proposition 4.1, the Good-Bernardo-
Zellner prior compatible with such a information is N ( % , c 2 ) . We suppose 
that the random variables p0, e ( and r\, are independent. Hence, under 
normally distributed errors, the rational expectations system is given by 

ft^ft^+Tl,.,, 

p m ' ~ ' - 5 - | Q I V '  
P l 1 - 7 ( 1 - p) y P i 1-y' 
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or equivalent^, in terms of (5.1) and (5.2), 

m 

1 - 7 ( 1 - p ) 

where 
-|2 

e, ~ N(0, a 2 ) , and a 2 = 
y p o v 

[1 - 7 ( 1 - P ) ] ( l - 7 ) 

To test the common assumption of convergence with available data on 
p t , m,, y, 5, p, and y, and under normally distributed errors we use equations 
(5.7), (5.9) and (5.10) with univariate error terms. In such a case, the 
posterior distribution of p, 11,_ , is N(P,, a 2 ) , where 

CT(
2 = ( l - e f ) a 2 , 

The null hypothesis to be tested is H 0 : p > 0 for all t > 1. Proceeding 
recursively and starting off at f = 1, we reject H 0 i f a f appears for which 
P, = 0 does not lie within a highest posterior density interval with a given 
uniform significance level a , namely (p, - Z a / 2 O t , P, + Z a / 2 c r ( ) where, as 
usual, P { Z > Z a / 1 ) = a / 2 and Z ~ \/(0, 1). 

Finally, we w i l l apply Good-Bernardo-Zellner priors to consumption deci­
sions under uncertain inflation. We assume that there is a large number of 
identical consumers, each of whom makes consumption decisions in T- 1 
periods (f = 0, 1 , T - 1), and has the following budget constraint: 

p^G^P^j+O-e, ) p + S y -
1 -7 (1 - p ) ' 

w t _ x M t = w t _ x M t _ , + g , _ l + y , _ l - ct_l, (7.18) 
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t = 1, T, M 0 > 0 g iven, M T > 0 , 

where M f is the stock of currency owned at the beginning of period r, w ( is 
the value of the currency measured in goods at t (the reciprocal of the price 
level), gt stands for government lump-sum transfers at t, y t is real income at 
t, and c 'is consumption at t. Equation (7.18) can be rewritten, in terms of 
the inflation rate 

as 

"t-1 . 
71, = 1 

(1 +7t ( )m, = ( l +TC,_ , ) « , _ , + y , _ , - c , _ , - n f _ , / « , _ , , (7.19) 

i = 1, r , 

where m ( = w f M ( represents money balances and the last term on the right-
hand side stands for depreciation of money balances from inflation. Note, 
however that the above budget constraint requires additional information on 
w_ and w T . 

Private agents have no knowledge of w _ p w Q , w r and therefore, 
they do not know the inflation rate, n t . However, we assume they have 
partial information on the distribution of w _ v in terms of the first two 
moments, say, E{ w_,} = w _ , and E{w2_,} = a l , + w 2 _ , . 

B y using Proposition 4.1, with 1(9) and F(9) constant ( i.e., before 
supplementary information becomes available, initial knowledge is vague), 
we find that the Good-Bernardo-Zellner prior compatible with the available 
information for w_ , is N ( w _ , , & ,). Therefore, 

w_ i M 0 = (1 + 7t 0 )m 0 ~ W(w_ X M 0 , a 2 . X M 2 ) . 

Of course, we assume that vv_, > 0. 
Suppose also that private agents are capable of making indirect meas­

urements , 7t,, of 7tr, according to the rule 

(1 +7C f)m = ( l + 7 t ( ) m , + £,, t = l , . . . , T , (7.20) 
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where m is a constant target chosen by the monetary authority at t = 1. We 
assume that the observation errors, e, are independent normal random 
variables with mean zero, variance a 2 and E{w_ ,£ (} = 0. 

The representative individual's objective is" to maximize, at the present 
(f = 0), his total expected uti l i ty of consumption over T-\ periods, 
namely, 

(7.21) 

Note that, for simplicity, no discount factor has been included in the 
overall utility, and money services provide no utility. The utility function is 
expressed as the quadratic function 

u ( c t ) = a l C t - ^ c l t = 0,...,T-\. (7.22) 

Here, a v a 2 > 0, and the ratio a / a 2 determines the level of satiation. 
Note that « (0) = u ( 2 a / a 2 ) = 0, u ( c ) > 0 for 0 < c, < 2 a / a 2 , u ( c , ) < 0 for 
c, > 2 a / a 2 , u ' ( c , ) > 0 for 0 < c, < a / a 2 , and u { c ) < 0 for c, > a / a 2 . The 
salvage value is chosen as v (w r _ X M T ) = - ( a 2 / 2 ) [ w T _ , M T ] 2 . 

We assume that the income of the individual fluctuates randomly 
around his income satiation level following 

V f = f i + T i f , Ti, ~ AJ(0, a 2 ) , t = 0,...,T-\, (7.23) 

where the n ' s are independent endowment shocks satisfying E{e r\} = 0 for 
a l l f , j , a n d E { W _ I T i < } = 0 . 

In order to keep monetary experiments as separate as possible from the 
effect of other government activities, we suppose that at each time 
f = 0 , 1 , T - 1, the government consumes nothing, has no debt and is 
committed to pr ovide a lump-sum subsidy to compensate for depreciation 
of money balances whatever the rate of inflation is. Thus , the gover nment 
budget constr aint is given by 

g , = n / n p i = 0 T - 1. (7.24) 
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After incorporating government behavior, (7.24), and income fluctua­
tions, (7.23), into the representative individual's budget constraint, (7.19), 
we get the consolidated constraint for the economy 

( l + n t ) m t = ( l + n t _ l ) m t _ l - ( c t _ l - ^ - ) + T\t_l, r = 1, T (7.25) 

Let us denote ft = (1 + n t ) m r ft, = H>_ ,A/0 and a 2 = a 2
 XM%. Note that 

n, is unobserved, and therefore ft is unobserved. The social planner prob­
lem is thus stated as 

M i n i m i z e E + ß2-

P t = P, i - ( c < i L) + r'/ v t = l , . . . , T 

( l +Tc )m = ft+e 1 = 1 , . . . , T 
subject to: <| 

P o ~ W ( P o ^ o ) ' 

e ; ~ N/(0, a 2 ) , r\t ~ N ( 0 , a 2 ) , with (3Q, e ( and r i ( independent. 

The above constraints determine the state-space representation of the 
dynamics of ft with control ct_x. It is worthwhile to note that such con­
straints collapse into y , _ x = c t _ x , where y t _ x = y t . x + ^ t _ x - 4 0 = Po ~ »». 
^ ~ W(TC;m, o 2 ) for t = 1 , 7 - 1, and £ r = P r - m . The optimal planned 
consumption path, { c , ) ^ t satisfies 

c = — + P , / = 0. t = o , r - 1 , (7.26) 

where the estimates ft are computed through the equations (5.7), (5.9) and 
(5.10) with univariate error terms, as 

ft = G ( f t _ , + ( ! - 9 ^ ( 1 + ^ » 1 , /=!,..., 7 - 1 , (7.27) 

, /=!, . . . , 7 - 1 (7.28) 



84 ESTUDIOS ECONÓMICOS 

ö 2 = ( l - 6 ( ) C T 2 , f = l , . . . , T - l (7.29) 

Moreover, the optimal salvage value is reached at 

ß r = 0 r ß r _ , + (1 - e r ) ( l + n r ) m > 0. 

8. Summary and Conclusions 

We have presented, in a unifying framework, a number of wel l-known 
methods that maximize a criterion functional to obtain non-informative and 
informative priors. Our general procedure is, by itself, capable of dealing 
with a range of interesting issues in Bayesian analysis. However, in this 
paper, we have limited our attention to Good-Bernardo-Zellner priors as well 
as their application to Bayesian inference. 

The choice of a prior distribution depends on experience and knowl­
edge. Thus, it is impossible to choose a prior that w i l l always be applicable 
to all circumstances. In our approach the Good-Bernardo-Zellner priors 
provide a broad class of prior distributions that are appropiate for use in a 
variety of situations in economic theory and applied econometrics. 

Throughout the paper, we have emphasized the existence and unique­
ness of the solutions to the corresponding variational and optimal control 
problems. There are, of course, many other members of the class A that 
deserve much more attention than what we have attempted here. Needless 
to say, more work w i l l be required in this direction. Results w i l l be reported 
in future work. 
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