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Resumen: A l utilizar los métodos de remuestreo, presentamos evi­
dencia sobre el desempeño de modelos estacionarios 
en diferencias y en tendencia para describir la produc­
ción real de México. Bajo la hipótesis alternativa, la 
producción fluctúa estacionariamente alrededor de una 
tendencia de largo plazo con un número desconocido 
de cambios estructurales, identificados a través de mé­
todos de búsqueda globales y secuenciales. Introduci­
mos una nueva regla de detección del número de 
cambios estructurales y comparamos los resultados con 
técnicas tradicionales. 

A b s t r a c t : Utilizing resampling methods, we present evidence on 
the rejection probabilities for difference-stationary and 
trend-stationary models for Mexico's real and real per-
capita annual gross domestic product. The trend station­
ary alternative allows for stationary fluctuations around 
a long-run trend function with endogenously determined 
multiple structural breaks, via global and sequential 
search methods. The number of breaks is determined 
using a unit-root rejection stopping rule and a param­
eter-constancy stopping rule. 

* We are grateful to Robert Bichsel for very detailed and helpful comments and 
discussion on an early draft, P. Perron for helpful conversations, and participants at the 
XVI Latin American Meeting of the Econometric Society in Lima, 1998, and seminar 
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1. Introduction 

The issue of whether annual Gross Domestic Product, G D P , has a unit-
root in the long run has been widely investigated over the last fifteen 
years. One of the main conclusions one can draw from the literature is 
the great importance of the role of the deterministic trend function: for 
many countries, the rejection of a unit root in real G D P depends on whether 
the trend function under the alternative hypothesis is modeled as a l in­
ear trend or as a linear trend with structural breaks. Examples can be 
found in Ben-David and Papell (1995), Duck (1992), Noriega (1992), 
Noriega and de Alba (1999), Perron (1989, 1992, 1993, 1997), Raj 
(1992), Zivot and Andrews (1992), Zelhorst and Haan (1995), for the 
case of a single break, and Lumsdaine and Papell (1997)for the case of 
two breaks. This research has utilized versions of the so called Dickey-
Fuller (1979) unit root test augmented with dummy variables to accom­
modate a broken-trend function. In this setup, the null hypothesis implies 
a random walk behavior for G D P , while the alternative hypothesis im­
plies that G D P is generated from an autoregressive process which fluctuates 
stationarily around a trend with structural breaks in either its level, trend 
or both. It is well known that i f real G D P follows a unit root process, then 
the traditional separation between (short-term) business cycles and (long-
run) trend growth is misleading: any 'cyclical ' movement can perma­
nently alter the long-run trend of the variable. 

Lumsdaine and Papell (1997), argue that it is far from obvious that 
a single structural break is a good characteristic of long-term macro 
series. Clemente, Montanez and Reyes (1998) emphasize the impor­
tance of correctly specifying the number of breaks when testing for a 
unit-root. In the empirical part of their paper, the unit-root null hypoth­
esis is tested against a trend stationary model with an increasing num­
ber of breaks, starting from zero. They conclude that the unit-root 
hypothesis can be rejected only after a double change in the determinis­
tic mean is accomodated in the model. Both papers consider the case of 
models allowing for two breaks in the trend function. In practice, however, 
the true number of structural breaks in a time series is unknown, and 
there are different ways to determine it. Recent literature on multiple 
structural change (Bai (1997a,b), Bai and Perron (1998a,b)) studies the 
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possibility of estimating the number of breaks based on a parameter 
constancy test in a sequential fashion. In these papers, structural breaks 
are added to the model until the null hypothesis of parameter constancy 
is not rejected.1 However, since there are unlimited ways in which a 
process could be nonstationary, the stopping ruleof parameter constancy 
is only one possibility among many. In this paper weexplore the possi­
bility of relating a structural break to unit root behaviour.2 That is, the 
stopping rule we examine is: stop adding breaks when the u n i t r o o t 
form of nonstationarity is rejected, instead of: stop adding breaks when 
the p a r a m e t e r v a r i a t i o n form of nonstationarity is rejected. The advan­
tage of this criterion is that it allows the possibility, by construction, of 
identifying those dates which are responsable for unit root behaviour.3 

Obviously, the higher the number of structual breaks needed to reject 
the null hypothesis of a unit root the closer the process wil l be to unit 
root behaviour. From the empirical literature, however, it can be seen 
that a few breaks are usually all that is needed in order to reject the unit 
root null hypothesis. 

This paper presents evidence on the nonstationarity properties of 
production series, once allowance is made for an unknown number 
of structural breaks in the deterministic trend function of the process, 
utilizing both stoppingrules to determine the number of breaks. There 
are no empirical results in the literature on the use of search methods 
coupled with these two stopping rules in testing for a unit root in eco­
nomic time series. 

The plan of the paper is as follows. Section 2 presents the data and 
justifies the use of trend break models. In section 3 we present the 
resampling procedure carried out to test for the presence of a unit root 
with an unknown number of structural breaks in the trend function, 

1 In Bai (1997a) and Bai and Perron (1998a) it is shown that this stopping rule 
yields a consistent estimation of the true number of breaks, provided the size of the test 
slowly converges to zero. 

2 It is well documented by now that structural breaks in the trend function of macro 
series are responsable for the 'apparent' unit root behaviour which results from ignoring 
them in the model's specification (see Perron (1989), Rappoport and Reichlin (1989), 
Reichlin (1989), Chen and Tiao (1990), and Hendry and Neale (1990)). 

3 The criterion used in this paper is based on Monte Carlo experiments which ex­
amine the relative performance of these two stopping rules. Preliminary results in Noriega 
(1999) show advantages of the unit root rejection stopping rule over the parameter con­
stancy stopping rule in its ability to identifying the true number of structural breaks in 
the trend function. 
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making use of the Unit Root Rejection Stopping Rule, U R R - S R , and the 
Parameter Constancy Stopping Rule, P C - S R . In section 4, we apply both 
stopping rules to two observed macro series for which at least two struc­
tural breaks are apparent in the sample. In doing this, we allow for the 
presence of an unknown number of structural breaks estimated from 
sequential and global procedures. In particular, following Rudebusch's 
(1992) resampling procedure, we present evidence on the rejection prob­
abilities for difference stationary and trend stationary models for 
Mexico's long-run annual real G D P and real per capita G D P , using exact 
critical values based on the Monte Carlo distributions of the Dickey-
Fuller type r-statistic. We extend the set of plausible alternative hypoth­
eses to allow for models with structural breaks in the trend function, 
under different criteria for the estimation of the break dates, and the 
determination of the number of breaks. To determine this number, we 
use the two stopping rules mentioned above. Using the first rule, we start 
by locating a first break point using search methods recently studied in 
Bai (1997a), Bai and Perron (1998a), andLumsdaine andPapell (1997). 
The n u m b e r of breaks is the result of sequentially applying these meth­
ods until the null hypothesis of a unit root c a n n o t be supported by the 
data a n d the alternative hypothesis of a broken trend stationary model 
c a n be. Under the second stopping rule, we utilize the sequential method 
of Bai (1997b), that consistently estimates the number of break points, 
in which the stooping rule rests on parameter constancv tests. Finally in 
the last section we draw some conclusions. 

2. Data and Justification 

As mentioned above, we follow Rudebusch's (1992) procedure to in­
vestigate the closeness of the unit root distribution to plausible alterna­
tive hypotheses. Due to some features of our data set, the approach 
extends that of Rudebusch in that we consider Trend Stationary, TS, 
models with a trend function allowing for structural breaks, as plau­
sible alternatives to a difference stationary, DS, model. These TS hy­
potheses assume that both the number and location of the breaks is 
unknown. This wi l l allow us to assess the relevance of the deterministic 
trend component in testing for a unit root using exact distributions of 
the test statistics, when plausible (estimated from the data) alternative 
hypotheses are considered. 
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The data consist of annual observations of Mexico's real gross do­
mestic product, R G D P , from 1921 to 1995, and real per capita G D P from 
1921 to 1994.4 Natural logarithms of the data are shown in figure 1 at 
the end of this paper. As can be seen, the strong upward trend in both 
series seems to have undergone more than one break inthe sample. There 
seem to be at least two strong structural breaks which have resulted in 
multiple growth paths for both series, occurring somewhere at the be­
ginning of the 1930s and of the 1980s. Mexico's internal and external 
economic environment was particularly interesting around those dates. 
The years surrounding 1930 brought both external shocks and the inter­
nal reorganization of economic activity. During the period 1927-1928, 
a political conflict over the oil rights of us firms led to a 50% reduction 
in oil production. The Great Crash of 1929 severely affected Mexican 
exports: in 1932 they were a third of what they had been in 1929. As a 
result, government spending dropped by 25% from 1929 to 1932. These 
factors explain the downward trend in production over the period 1927¬
1932, see figure 1. On the other hand, internal reforms together with the 
recovery of the world economy from the Great Crash secured a positive 
growth path from the beginning of the thirties. By 1931, Mexico aban­
doned the Gold Standard and the exchange rate was left to fluctuate 
freely, until there was an 80% devaluation of the peso in 1933. By that 
year, production and exports increased as us demand stabilized after the 
crisis. During the 1930s, other important reforms were responsible for 
the observed growth rates in production: the monetary reform of 1936, 
which eliminated the relationship between the peso and any metal, and 
the use of public spending in capital formation. 

The break around 1980 produced a slowdown in growth rates for 
both real G D P and real per capita G D P . In 1979, the government adopted a 
model based on oil exports, following the oil field discoveries of 1978 
and the 150% increase in oil prices the following year. However, this 
oil-based strategy ended when oil prices fell in 1981, leaving the coun­
try with an enormous external debt, which had been contracted to de­
velop the oil industry. The 1982 increases in international interest rates 
led Mexico into a serious debt crisis. 

4 The source forRGDP is the Instituto Nacional de Estadística Geografía e Informática 
(1996), while that for per-capita R G D P is Alzati (1997). 
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Finally, although not as noticeable as in the case of these two breaks, 
there seems to be a slight but persistent upward change in trend around 
the middle of the century. Two important devaluations of the Mexican 
peso took place in 1948 (peso devalued by 42%) and 1949 (26%), fol­
lowed by an increase of nearly 50% in exports during 1950-1951, due 
to the Korean War, and the lower price of Mexican exports.5 

The question of how the cyclical fluctuations are affected when 
allowing for the endogenous estimation of these breaks is interesting. 
Diebold and Senhadji (1996) have made conjetures, and our results sup­
ply strong empirical evidence. A related question is how long the 
economy clings to a particular linear trend in such a way as to identify 
stationary cyclical fluctuations around it. To answer this question, the 
duration of stationary cyclical fluctuations must be investigated, while 
allowing economy to 'move' along structurally-different long-run paths. 
To shed some light on these questions we compute by simulation the 
sampling distributions of the r-statistic for testing for a unit-root when 
the data generation process, D G P , is a D S model (the null hypothesis), 
and a TS model with m > 0 breaks (the alternative hypotheses). The 
D S and TS D G P S use the parameters from TS and D S models estimated 
from the empirical data. The results are thus extracted, as in Diebold 
and Senhadji (1996), from where the sample estimate of the /-statistic 
for testing for a unit root ( t M B V , e ) is approximately the same as in the 
empirical data. 

3. Resampling Procedure 

In this section we present the resampling procedure carried out to test 
for the presence of a unit root with an unknown number of structural 
breaks in the deterministic trend function, making use of both the U R R -
SR and the P C - S R to determine the number of breaks. Let us start with the 
no break case, denoting by Yt the logarithm of the observed output se­
ries. The first step is to estimate (by OLS ) the following TS and D S mod­
els, respectively: 

A7, = iu + J8i+ay,_1 + ^aiAYt_i + e , (1) 

5 Many of these facts were taken from Alzati (1997), Soli's (1970), and Torres-
Gaytan (1980). 
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Ay, = ^ 0 , ^ - + £, (2) 
1=1 

for t = 1, 2 , . . . , T, where r is the sample size and e, is an tW process. In 
the remodel (1) if a < 0, then Yt generates stationary fluctuations around 
a linear deterministic trend. If a = 0 (the null hypothesis), then Yt does 
not generate stationary cycles around this trend. The D S specification 
in (2) represents case where no deterministic trend is considered. The 
reason for the D S specification is that interest centers on the autoregressive 
parameter and its associated /-statistic estimated from (1), both of which 
are invariant with respect to the parameters \ i and ft for any sample.6 

Hence, in simulating the /-statistic on a, the D G P under the D S null hy­
pothesis can be stipulated as in (2). In determining the autoregressive 
order for each model, we first fix an arbitrary maximum order, as in 
Perron (1997), labeled k max. When the estimated coefficient on the k 
max'h lag is not significant we estimate again with k max - 1 lags. We 
continue in this fashion until we find a significant lag. 7 

Next we simulate, as in Rudebusch (1992), the distribution of the t-
statistic for the null hypothesis of a unit root (a = 0 in (1)), called f , 
under the hypotheses that the true models are the TS model (1) and the 
D S model (2), both estimated from the data. That is, under the TS ( D S ) 
model we use the estimated parameters from (1 )((2)), and the first k + 1 
observations as initial conditions (Ay 2,..., A ^ + 1 ) to generate 10,000 
samples of AYr t = 2,...,T, with randomly selected residuals (with re­
placement) for each A y , t = k + 2 , . . . , T from the estimated TS ( D S ) 
model. For each sample'thus generated, regression equation (1) is run 
and the corresponding 10,000 values of f are used to construct the 
empirical density function of this statistic under the TS ( D S ) model, 
l abe led / r e ( f ) ( f D S ( i ) ) . 8 

A TS model with m structural breaks in both level and trend can be 
written as: 

6 The same invariance holds when considering below alternative hypotheses allow­
ing for structural breaks, see for example Perron (1989, p. 1393). 

7 Diebold and Senhadji (1996) report the best-fitting regression for k = 2, 3, 4. In 
Rudebusch (1992), the order of the autoregressions is fixed to two, irrespective of whether 
we estimate the D S or TS model. Rudebusch (1993) uses A R orders four, six and eight. 

8 The 10,000 fitted regressions utilize the already estimated value of*, under the TS 
( D S ) model. All calculations were carried out in G A U S S . 
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m m J c 

AYt = \ i + $ t + Y/QiDUit+y£yiDTi,+aY,_l + £a ,AK,_ , •+e , (3) 
/=! i=l 1=1 

where D i / . , a n d D T . are dummy variables allowing changes in the trend's 
level and slope respectively, that is, 

D U . = l(r > Th) and D T . = (t - T h ) \ { t > T h ) , 

where 1( ) is the indicator function and Th. is the unknown date of the P 
break. This equation is a generalization to m breaks of the Innovational 
Outlier Model, used by Perron (1989) and others." For reasons explained 
above, the relevant D S model is again, for each value of m, equation (2). 

In order to generate, via Monte Carlo, the empirical densities of f 
under the estimated TS D G P (3) and D S D G P (2), f T S m ( r ) and f D S i n ( f ), 
(m = 1, 2,...), respectively, we need an estimation of the number (m) 
and location ( T h ) of breaks. Once these estimates are obtained (see be­
low), the Monte Carlo experiments for generating f T S m ( f ) and f D S m { f ) , 
(m = 1, 2,...), follow the same steps as in the no breaks case. 

In order to determine the location of the breaks, we use three differ­
ent criteria. The first selects the break dates as those years for which the 
unit root is rejected with the highest probability, i . e . when the /-statistic 
for testing the null of a unit root is minimized, over all possible combi­
nations of break dates. This is done for all values of k < k max. Because 
of perfect-collinearity problems due to the presence of dummy vari­
ables in the model, the occurence of a break in either the whole sample 
or in any subsample, has to be restricted to the following intervals. For 
m = \ , k + h < T h ] < T - m h , for the two breaks case, k + h < T h i < T - m h 
and TM + h < T ^ < T - { m - \ ) h , for the three breaks case, k + h < Thi 

< T-mh, Thi + ' h < T h 2 < T - ( m - \ ) h , and Th2 + h < T h } < T - ( m - 2 ) h , 
etc., with h = 3. We call this the min t& criterion. 1 0 3 

The second criterion chooses, among all possible combinations of 
m break dates, the one which yields the smallest residual sum of squares 
from (3). Again, this is done for all values of * < k max. Under this 

9 The only difference is that (3) does not include a pulse variable called D ( T B ) f by 
Perron (1989). This is also the approach in Zivot and Andrews (1992). 

1 0 This criterion is used by Lumsdaine and Papell (1997) for a two breaks model, 
applied to the Nelson and Plosser (1982) data set. 
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criterion, the above restrictions are placed over the intervals' length. 
We call this the min RSS criterion." 

The third criterion utilizes a sequential algorithm: we start by iden­
tifying a first break, Tb , as that year in which the null hypothesis of no 
structural break is rejected with the highest probability, that is, when 
the absolute value of the recursive /-statistic on the change of level or 
slope parameter is maximized. If a second break is suspected say, in the 
first subsample (/ = \ ,...,fh), then this recursive /-statistic is again used 
to determine a second break date T running from the beginning of the 
sample to the already estimated Th. Confirmation of the first break is 
achieved by recomputing again the recursive/-statistic over the subsample 
running from f + 1 to the end of the sample. If confirmation is 
achieved, a search for a third break follows the same steps. We call this 
criterion max 1 I for the case of a change in the trend slope, and max 
I t- I for the case of changes in the trend level. 1 2 

6 Note that the min t& and min RSS criteria imply simultaneous de­
termination of m breaks via a global search. The max \tS{ I or max I th I 
approach selects one break at a time, yet with a different criterion from 
the previous two, in such a way that the m breaks found are sequentially 
confirmed. 

In order to determine the number of breaks, we equip the above 
procedures with both the U R R - S R and the P C - S R , which indicate the termi­
nation of the search. Under the U R R - S R , we proceed sequentially using 
the first criterion: after we have identified the first break, we verify the 
presence of a unit root. If it cannot be rejected we allow the procedures 
to search for two breaks, testing again for the presence of a unit root. 
We continue in this fashion until we identify as many breaks as neces­
sary in order to reject the unit root null hypothesis. As can be seen, this 
is a sequential procedure which globally searches for an increasing num­
ber of structural breaks. To contrast our results with the U R R - S R , we also 
use the P C - S R , which relies on a sequential procedure based on the min 
RSS criterion coupled with hypothesis testing for parameter constancy 
as a stopping rule for the determination of the number of breaks. We 

1 1 This criterion for estimating break points is discussed in Bai (1997a, b), and Bai 
and Perron (1998a, b). 

1 2 Here again the above restrictions are placed over the intervals' length,with h = 3. 
This is the criterion used by Noriega and de Alba (1999), and is based on the 'repartition' 
method studied in Bai (1997a), also called 'refinement' in Bai (1997b). 
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briefly present here the methods developed in Bai (1997b) for detecting 
and locating an unknown number of breaks, based on a P C - S R . A n inter­
esting aspect of this procedure is that it is possible to estimate both a 
point and an interval for the location of each break. First, rewrite equa­
tion (3) in compact matrix form with m = 1 as follows, 1 3 

A Y = X $ + ZS + e (4) 

where A K = (AY2, AYy..., A Y T ) , X i s a (T- 1) x 3 matrix whose fh row is 
(Yt ,, 1, i), P = (a, H, P) ' , Z i s a ( 7 - 1) x 2 matrix whose r l h row is ( D U t , 
D T ) , 8 = (6, y) C and e is a (T- 1) x 1 vector of disturbances obeying 
very general conditions discussed in Bai (1997b). The sum of squared 
residuals obtained from applying O L S to (4), denoted S ^ T h ) , is the ob­
jective function to be minimized in the identification of a break point, 
that is: 

f h = arg min ST ( T h ) 
i < T

h
< T - i 

To carry out hypothesis testing of parameter constancy we use the 
sup-Wald test statistic proposed by Bai (1997b), defined as 

sup W T ( T h ) , (5) 
T

h
e [ K T , ( \ - K ) T ] 

where 

WT(Th ) = ~±—1 - , 

with M = I ~ X ( X ' X ) - i X : d 2 ( T h ) = S T ( T h ) / ( T - p - q ) , n = 1 ^ - e ( 0 , - ) , 
h T h equal to the O L S estimator of 8 from (4), and p and q equal to the 
number of variables in the matrices X and Z, respectively. 

Briefly [see Bai (1997b) for details], the procedure starts by identi­
fying the first break over the entire sample, if the sup-Wald test rejects 
the null hypothesis of parameter constancy. The sample is then divided 
into two subsamples separated by the estimated break point, and the 
sup-Wald statistic is used for testing parameter constancy in each 

1 3 Note that the model allows for a single break since the test of the null hypothesis 
of parameter constancy is applied sequentially in order to locate one break at a time. 
Also note that there is no need for augmentation terms. For details see Bai (1997b). 
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subsample. These two subsamples are to be further segmented when­
ever additional breaks (if any) are found by the rejection of the param­
eter constancy null using the sup-Wald statistic (5). The search terminates 
when the null hypothesis of parameter constancy can not be rejected for 
all the subsamples separated by significant breaks. When all of the break 
points are obtained, each one is reestimated if it comes from a sample 
or subsample containing more than one break. This is called 'refine­
ment' by Bai (1997b). If, as a result of the refinement, the break dates 
change, then the sup-Wald statistic should be applied over the new 
subsamples.14 The procedure stops if there are no additional breaks within 
each new subsample. If, on the other hand, new breaks are identified 
within the new subsamples, then a further refinement is required. 

Under this stopping rule, the reasoning behind this paper is imple­
mented through the use of critical values calculated via resampling 
methods. We simulate the distribution of the sup-Wald statistic (5) un­
der the null hypothesis of parameter constancy, estimated from equa­
tion (4). In particular, we use the estimated parameters from (4) under 
the null hypothesis of parameter constancy (5 = 0) and a standard nor­
mal variate as the initial condition to generate 1,000 samples of AYt, 
t = 2,...,T, with standard normal errors for each AYr For each of these 
samples, the regression equation (4) is run and the corresponding 1,000 
values of the estimated sup-Wald statistic (5) are used to construct its 
empirical density function under the null hypothesis of parameter con­
stancy. 

4. Results and Discussion 

We begin by testing the null hypothesis of a unit root against the alter­
native hypotheses of a TS specification allowing an increasing number 
of m > 0 structural breaks using our unit-root rejection stopping rule. 

1 4 For instance, if two breaks have been found, t h [ and 7^, where , f h { < f h 2 , 
then the first one has to be 'refined'by reestimating it using the subsample [1, tl>2 ] . 
Call T*n the resulting estimate. If T * h = Th[ , then the second break date is refined 

using the subsample [ f h { + 1, 7], otherwise we use [ f * 1 + 1, T]. If as a result of the 

refinement of the second break f *h= 7^, then there is no need to refine f h { , otherwise 

the first break date is refined using the subsample [1, f * } . 
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When this is done, the results are contrasted with those obtained from 
the application of the methods developed in Bai (1997b) for detecting 
and locating an unknown number of multiple breaks using the PC-SR, 
as outlined in the previous section. 

We first discuss the results for real G D P , presented in table 1. The 
first column indicates the number of breaks allowed in the trend func­
tion under the alternative hypothesis, m. The second column refers to 
the three different procedures for selecting the break dates, explained 
above. As mentioned earlier, the A R order comes from the first signifi­
cant lag k < k max. In the empirical applications k max is set at 5. The 
reason for this is that the data show an apparent break very close to 
the beginning of the sample. Setting k max = 5 allows the procedure to 
detect this apparent break, while a higher value for k max is chosen (say 
k max =10) the procedure may not detect it. Column 3 reports the value 
of the estimated value of k. Columns 4-6 report the break dates result­
ing from the estimation under each of the three criteria of column 2. 
Columns 7-9 indicate the type of break allowed in the trend function. The 
selection of the model for each time series followed the suggestions of 
Perron (1993). As he argues, although a model allowing changes in 
both level and slope of trend is the most general one (it encompasses 
models with breaks in level alone, or with breaks in slope alone), there 
are power gains by estimating a model without irrelevant regressors. 
For example, model (3) with 6. = 0 would be more appropriate if it were 
apparent from the data that the type of break involved no change in 
level but only in trend. Columns 10-12 report the ^-values for the diag­
nostic tests A C (the Lagrange Multiplier test of the null hypothesis that 
the disturbances are serially uncorrelated against the alternative that they 
are autocorrelated of order one), N (Jarque-Bera's (1980) test of the 
normality of residuals), and H (a test of the null hypothesis of homos-
cedasticity). In the second to last column, d £ stands for the standard 
error of regression. The last column reports the value of the /-statistic 
for testing the null hypothesis of a unit root. 

Let us begin our analysis for the case of a linear trend with no breaks 
( m = 0). The estimation results for this model are presented in the first 
row of table 1. To draw an exact inference on the unit root hypothesis 
through % m m p l e , we simulate the empirical density of this /-statistic un­
der both a D S and a TS D G P (with parameter values and disturbances 
extracted from the corresponding estimated model, as explained above). 
Then we calculate, under each density, the probability of rejecting the 
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D S and the TS specification, denoted Pr[ t < t s a m p l e I f D S (t) ], and 
Pr[ t < %sample I / „ (T) ], respectively (here t s a a p l e = -2.01). These prob­
abilities are presented in the first two rows of table 2, from which we 
can conclude that it is not possible to discriminate between the two 
specifications. Finally, the diagnostic tests in table 3 show strong evi­
dence of non-normality and heteroscedasticity in residuals. 

For the case of m = 1, both the min t& and the maxl r ? I select k = 4 
and a break date around 1980. The corresponding /-statistics for testing 
a unit root ( t ) are -4.05 and -3.96. The corresponding p-values in 
table 2, show a clear rejection of the D S model in favor of the TS model 
with a single structural break in the trend function. However, the diag­
nostic tests in Table I show significant serial correlation, non-normality 
and heteroscedasticity. From the min RSS criterion, the identified break 
year is 1932 and the sample test statistic for the hypothesis of a unit root 
i s t sampk = 1 3 5 implying an explosive autoregressive root. 

Turning to m = 2, the estimated breaks are found at very similar 
dates. The p-values from table 2 show we can reject the D S model only 
under the m i n i & criterion. 1 5 However, the diagnostic tests in table 1 
show significant serial correlation and non-normality in the residuals. 

Table 2 
E x a c t p V a l u e s of t h e D i c k e y - F u l l e r S t a t i s t i c 

f o r M e x i c o ' s R e a l GDP ( 1 9 2 1 - 1 9 9 5 ) 

C r i t e r i o n 
p - v a l u e 

m = 0 m = I m = 3 

W " * s a m p l e 

Min t& 

Prpr < T , 
s a m p l e 

Pr[t < t , 
L s a m p l e 

Min RSS 
Prft < x , 

L s a m p l e 
Prix < x 

L s a m p l e 
Maxlf^l 

f r s (*) 1 
I I D S W l 

f r s (*) 1 
fos m 

f r s W 1 
fos m 

f r s ( V i 
fos ffl] 

0.881 
0.584 

0.768 0.824 0.885 
0.033 0.000 0.000 

0.225 0.943 0.861 
0.996 0.536 0.000 

0.777 0.840 0.822 
0.043 0.104 0.000 

1 5 The /-statistic for the unit root null of oversetwedge t s a m p i e i s equal to - 7, and 
is significant at the 5% level according to the critical values supplied in Lumsdaine and 
Papell (1997) for their ' C C model. 



178 ESTUDIOS ECONÓMICOS 

For three breaks, k = 3 was selected by all three criteria, and nearly 
identical dates are found for the three identified breaks. Note that the 
second breaks is only in the slope of the trend, whilst the first and third 
breaks are in both level and trend. The diagnostic tests are not signifi­
cant, as can be seen from table 1. The p-values from table 2 make clear 
that the sample values of t s a m p l e under each criterion could hardly have 
been generated from the D S model. On the other hand, the p-values 
under the TS model indicate that there is no strong evidence against the 
TS specification. 

Regarding real per-capita G D P , the empirical results are similar. For 
the no breaks case, we see from table 3 evidence of autocorrelation and 
non-normality in residuals, while table 4 reveals the impossibility of 
rejecting either the D S or the TS specifications. Allowing for a single 
break, it is only under the m i n t a criterion that we can reject the D S 
model at the 3.7% level, according to the /7-values in table 4. Table 3 
shows significant autocorrelation and non-normality in the residuals 
under both the m i n r & and the maxl iy l criteria, and an explosive 
autoregressive root under the min RSS criterion. For the case m = 2, the 
p-values from table 4 indicate strong rejection of the D S model, under 
the minr^ and the m a x l i ? I criteria. However, there is also strong evi­
dence of heteroscedasticity in residuals, and a l l the other diagnostic 
tests are only marginally non-significant. As with real G D P , allowing for 
three structural breaks results in a sharp rejection of the D S model in 
favor of the TS one, whilst the diagnostic tests are much more reason­
able. The first and second breaks with real G D P coincide across all crite­
ria and the third one lies around 1980. 

Let us now turn to the application of the sup-Wald statistic (5) and 
the parameter constancy stopping rule on real G D P and real G D P per capita. 
Results are summarized in tables 5, 6 and 7. Table 5 reports the results 
of sequentially applying (5), as explained at the end of section 3. As 
mentioned earlier, perfect collinearity problems due to the presence of 
dummy variables in the model restrict the occurrence of a (single) break 
to the sample k + 3 < TM < T - 3, and that is why we select % in (5) such 
that n x T s = 3, where 7 represents either the sample size, or the size of 
a subsample. For example, for the full sample of real G D P in the table, 
1921-1995, we have 75 observations, and n x 75=3 implies n = 0.04. 
For the subsample 1933-1995, there are 63 observations, which implies 
n = 0.047. As can be seen, the search for breaks uses all the available 
data in the sample or the relevant subsample, which implies that we 
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Table 4 
E x a c t p V a l u e s of t h e D i c k e y - F u l l e r S t a t i s t i c 

f o r M e x i c o ' s R e a l P e r - C a p i t a GDP ( 1 9 2 1 - 1 9 9 4 ) 

C r i t e r i o n 
p - v a l u e 

m = 0 m = 1 m = 2 m = 3 

M i n í a 

P r f t ^ sample 
Pr[x < X 

sample 

sample 

Pr[T < X s a m p i e  

Min R S S 

Pr[x < x 
Pr[x < x 

Max IrJ 
P ' ' [ x < x ( „ m f ) f r 

P r [ T < X M , „ p , c 

sample 

sum pie 

ÍTS 
f DS 

f r s 
f DS 

frs 
f DS 

frs 
fps 

(x)] 
(X)] 

(X)] 
(X)] 

(X)] 
(X)] 

(x) ] 
(x)] 

0.833 
0.270 

0.734 0.812 0.821 
0.037 0.000 0.000 

0.447 0.790 0.785 
0.997 0.558 0.000 

0.782 0.812 0.849 
0.126 0.000 0.000 

have no prior information on the time of possible structural change, as 
noted in Andrews (1993). 

For real G D P , the upper panel of table 5 shows the results from ap­
plying the sup-Wald statistic. Over the entire sample (1921-1995) a 
significant break (with changes in both level and slope of trend) is iden­
tified in 1932. Upon dividing the sample into two subsamples separated 
by this break, only one additional break is identified in 1981 for the sub-
sample 1933-1995. Looking for further breaks in the resulting three 
subsamples yields no additional breaks. The table also shows that these 
dates are actually confirmed by the refinement process. The table shows 
a tight 95% confidence interval only for the first break date.16 For real 
per-capitaGDP the lower panel of table 5 shows the four confirmed break 
dates. Note that the first three break dates are very close to those ob­
tained under the 'unit root rejection' stopping rule (see table 1). Note 
also that the one found in 1981 has a very large confidence interval. 

Table 6 reports the estimated regressions accounting for the identi­
fied breaks, together with diagnostic tests, while table 7 reports the p-val-
ues resulting from the simulation of the distribution of the i-statistic 
for the null hypothesis of a unit root (a = 0 in (3)) under the hypotheses 
that the true models are the TS model (3) and the D S model (2), both 

1 6 See Bai (1997b) for details on the construction of the confidence intervals. 
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Table 5 
Test S t a t i s t i c s , B r e a k P o i n t s , a n d C o n f i d e n c e I n t e r v a l s  

95% 

Serie 

Type 

o f break' Sample Sup-Wald t K 

C r i t i c a l 

V a l u e 

Confidence 

I n t e r v a l 

R G D P Land T 1921-1995 42.57 1932 0.04 24.59 
T 1921-1932 20.75 1927 0.25 24.66 
Land T 1933-1995 32.77 1981 0.05 15.94 
Land T 1933-1981 12.92 1953 0.06 22.56 
L 1982-1995 4.88 1989 0.21 15.10 

With Refinement 

L and T 1921-1981 33.14 1932 0.05 23.69 [1931. 1933] 
Land T 1933-1995 32.77 1981 0.05 15.94 [1978, 1984] 

With Refinement 

R G D P p/c Land T 1921-1953 36.05 1932 0.09 24.40 [1931, 1933] 
T 1933-1981 15.27 1953 0.06 11.50 [1951, 1955] 
T 1954-1985 23.69 1981 0.09 16.61 [1972, 1990] 
L 1982-1994 22.63 1985 0.23 16.88 [1984, 1986] 

' L stands form level and Tfor trend. Critical values from a bootstrap experiment. 

estimated from the data. As can be seen from table 7, it is only for real 
per-capita G D P that the unit root is (strongly) rejected, whilst the TS 
alternative (allowing for 4 breaks) can not be rejected. From table 6, the 
result ing estimated regressions show a marginal rejection of 
autocorrelation for real G D P , and strong evidence of non-normality and 
heteroscedasticity in the residuals for real G D P per-capita. 

For real G D P , a comparison of the estimated standard errors in tables 
1 (under the min RSS criterion, m = 3) and 6, reveals an increment of 
21% from the former to the latter. Also, the four breaks model of table 
6 for real per capita G D P reports a higher estimated standard error of 
regression than the 3 breaks model of table 3. 

5. Conclusions 

Our results support the view that the structure of the trend function 
determines whether cycles fluctuate stationarily or not. In particular, 
the empirical results based on the unit-root rejection stopping rule indi­
cate that it is possible to separate a stationary cycle for Mexico's real 
and real per-capita production from a long-run trend with 3 structural 
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Table 6 
Regression Results of U s i n g t h e S u p - W a l d S t a t i s t i c 

m m k 

AY, = n + p/ + X e , D L / + ^ i y i D T i l + a Y l _ l + ^ a i A Y , _ i + e, 
/=] /=l 

p-vatues 
Serie m Type of break* A C N H 

R G D P 2 4 
1932 

1981 
L a n d r 

¿ a n d r 
0.100 0.441 0.437 0.027929 -2.34 

R G D P p/c 4 3 
1932 T 

1953 T 0.236 0.000 0.000 0.023056 -10.98 
1981 

1985 

T 

L 

* r and L stands for level. 

Table 7 
E x a c f p Va/t /e i of t h e D i c k e y - F u l l e r S t a t i s t i c 

Serie m p voto 

RGDP 2 

RGDP p/c 4 

Pr[T < T fe 1 ITS ( * ) ] 
1 / M (t)] 

0.943 
0.536 

Pr[T < T ï a m p / ( . 1 /re (*)] 
1 fes ( î ) l 

0.625 
0.000 

breaks. In other words, Mexico's real output has fluctuated stationarily 
around a 75 year long-run trend perturbed by three major events in 
or around 1931, 1950 and 1980. Specifically, the inclusion of an appro­
priate number of breaks makes it possible to end up with a separable 
stationary cycle. This implies that the appropriate answer to the ques­
tion of whether the economy is stationary would be to ask for how long. 

On the other hand, our results indicate that the application of the 
sup-Wald statistic coupled with the parameter-constancy stopping rule 
allows us to identify a stationary cycle only for real per-capita G D P al­
lowing for four structural breaks. On the other hand, the two breaks 
identified for real G D P do not seem to be adequate. Furthermore, regres-
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sion results from the application of this procedure are dominated by 
those obtained from the unit-root rejection stopping rule, which pro­
duce a better fit for each series. We present in figure 2 graphs of the 
natural logarithm of the series, together with the resulting identified 
broken trend functions, under the U R R - S R , and the min RSS criterion. 1 7 

The resulting cycles, shown in figures 3, are by construction stationary, 
and are the input for the relevant business cycle theory. 

It has been argued that "subsequent literature should focus on model 
selection, in determining both the number of breaks and also the type of 
break" (Lumsdaine and Papell (1997), p. 218). We certainly support 
this vision as long as it is firmly assumed that this is only an empirical 
matter. However, we tend to think that economic theory should also 
have something to say about this. For instance, what sort of alterations 
in economic agents' parameters would produce (or would be respon­
sible for) a growth path in real output subject to (infrequent) abrupt 
changes, and what type of parameters are these? This would represent 
an interesting and productive interaction between growth theory and 
time-series econometrics. Stock (1994) recognizes an undeveloped link 
between trend-break models and economic theory. This point was also 
raised by Perron (1989) and Rappoport and Reichlin (1989). Ina recent 
paper, Lau (1997) explores the time series properties of both exogenous 
and endogenous growth models, and finds that changes in economic 
fundamentals lead to the phenomenon of breaks in trends. 

Finally, if by the inclusion of an appropriate number of breaks it 
were possible to reject the unit root hypothesis at a high level of confi­
dence for any time series, then there would be no need for cointegration 
analysis. This means that a group of unit root-nonstationary variables 
do not move together in the long-run, but that all variables are station­
ary around broken trends, and that what is probably left to do is to test 
for co-trending, in order to identify long-term affinities among groups 
of stationary variables subject to individual, or most probably interre­
lated, infrequent, structural breaks.1 8 

1 7 Since the min R S S criterion ensures the best fitting model, we recomend this 
criterion over the other two. Furthermore, the min R S S criterion does not bias the results 
towards either rejecting the unit root (as the min i a does), or accepting a significant 
break point (as the max 1 1 J or the max I t y I do). 

1 8 Campos, Ericsson and Hendry (1996) investigate the power of several 
cointegration tests when emph{one of the variables in the cointegratin relationship con­
tains a structuralmedskip break. 
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