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Resumen: En una subasta todos-pagan, los licitantes pagan el precio ofrecido y

Abstract:

el licitante que somete la oferta mas alta gana el bien. Los equilibrios
de Nash de este juego incluyen el uso de estrategias aleatorias, que
protegen a los licitantes de perder por una pequeha cantidad. Este
documento generaliza el andlisis ordinario para permitir “errores” de
decisién enddgenos, que pueden ser debido a equivocaciones o a varia-
ciones aleatorias no observadas en las funciones de pago. La distribu-
cién de los errores depende de los pagos esperados en equilibrio, que a
su vez determinan las distribuciones de errores como un punto fijo. Un
resultado derivado de este trabajo es que el equilibrio generalizado de
Nash y el equilibrio Nash de la subasta todos-pagan son equivalentes si
los términos de error son idéntica e independientemente distribuidos.

A widely used sealed-bid auction is the first-price auction. In this auc-
tion, the highest bidder wins the item and pays the price submitted;
the other bidders get and pay nothing. The all-pay auction is sim-
ilar to the first-price auction, except that losers must also pay their
submitted bids. The Nash equilibria of this game involve the use of
randomized strategies, which protect bidders from being overbid by a
small amount. This paper generalizes the standard Nash equilibrium
analysis of the all-pay auction to allow for endogenously determined
decision "errors”. Such errors may either be due to mistakes or to un-
observed random variation in payoff functions. The error distributions
depend on equilibrium expected payoffs, which in turn determine the
error distributions as a fixed point. A striking result derived in this
paper is that for any structure of the error terms the generalized Nash
equilibrium and the Nash equilibrium of the all-pay auction are equiv-
alent if the error terms are identically and independently distributed.
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1. Introduction

Auctions are one of the basic mechanisms for determining the prices
of goods to be exchanged. In auctions, prices are determined by com-
petition among potential buyers. Since the price in an auction is
determined when the object is sold, it reflects all the available infor-
mation and the preferences of the potential buyers who are bidding.
Auctions may take one of two basic forms, oral or sealed-bid. In oral
auctions, bidders hear one another’s bids as they are each made. In
sealed-bid auctions, bidders simultaneously submit one or more bids
to the seller without revealing their bids to one another.! A widely
used sealed-bid auction is the first-price auction. In this auction, the
highest bidder wins the item and pays the price submitted; the other
bidders get and pay nothing.

The all-pay auction is similar to the first-price auction, except
that losers must also pay their submitted bids. Baye, Kovenock and
De Vries (1995) fully characterize the set of Nash equilibria in the
first-price all-pay auction with complete information. In contrast to
previous research, they show that the set of equilibria is much larger
than the set of symmetric equilibria.

Many economic problems can be modeled with the all-pay auc-
tion. In situations such as lobbying for rents in regulated or pro-
tected industries, technological competition and political campaigns,
the participant showing the greatest effort or expenditure wins the
prize, while the others are penalized. For example, Dasgupta (1986)
uses the all-pay auction to model patent races in which the bids are
research and development expenditures and the prize is a patent with
known value. The firm spending the most on research and develop-
ment obtains the patent, while the other firms make loses since they
do not recover their expenditures.?

A characteristic of this model is that the reward structure is such
that ex-post payoffs are discontinuous. This property precludes the
existence of Nash equilibrium in pure strategies.®> The Nash equi-

L For a further discussion of auctions, see, for example, McAfee and McMillan
(1987), Milgrom and Weber (1982) and Myerson (1991).

2 Moulin (1986) also examines this symmetric equilibrium, but interprets it
as a lobbying game.

Dasgupta and Maskin (1982) have shown that discontinuous games do pos-
sess mixed-strategy Nash equilibria under certain restrictions. A sufficient set
of conditions is that the firm’s profit function is everywhere left lower semi-
continuous in its price, (and hence weakly lower semi-continuous), the profit func-

tion is bounded, and the sum of the two firms’ profit functions is continuous.
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librium of the all-pay auction with complete information typically
involves the use of randomized strategies, which protect bidders from
being overbid by a small amount. Experimental data seems to track
the qualitative features of Nash equilibria in games with structures
similar to the all-pay auction, but prices are often much higher than
the equilibrium predictions (Davis and Holt, 1994; Kruse et al., 1994,
and Baye and Morgan 2002).*

In order to sort out the reasons for the observed departures from
the Nash prediction, a useful positive theory of behavior in games
could begin by qualifying the assumption that individuals are perfect
maximizers of their own money payoffs. Several authors have relaxed
the perfect rationality assumption in experimental games: Brown and
Rosenthal (1990), Camerer and Weigelt (1990), McKelvey and Palfrey
(1992, 1995), Banks et al. (1994), Brandts and Holt (1992), Palfrey
and Rosenthal (1991, 1992), and Baye and Morgan (2002). One way
is to introduce decision error, i.e. in choosing their strategies players
make mistakes.

As a first step, it is useful to distinguish two sources of devi-
ations from the Nash equilibria as calculated from expected money
payoffs. First, systematic deviations may be due to the importance of
neglected factors, such as altruism, envy, fairness, etc. Second, non-
systematic or random “errors”, can follow from mistakes in recording
decisions, from time constraints as in chess games, or from random er-
rors in evaluating small differences in expected payoffs. Experimental
evidence suggests that nonsystematic errors can occur in strategic sit-
uations (McKelvey and Palfrey, 1993) and also in simpler individual
decision-making tasks (Anderson, 1994).

This paper investigates the quantal response equilibrium of the
all-pay auction model in which boundedly rational players may in-
teract. In contrast to the classical conception of rationality that is
based on unlimited capacity, boundedly rational players are limited
by their own computational ability. Boundedly rational players have
been most commonly characterized by either the random choice or the
random utility version of discrete choice theory. The discrete choice
framework is used to analyze the strategic interaction of multiple
individuals. The quantal response equilibrium is a game theoretic
equilibrium concept. In this model, players choose among strategies

4 The experiment procedures in such work involved 6 two-hour sessions, each
with a different cohort of five subjects. Each session lasted for 60 periods. Par-
ticipants were undergraduate business students with previous experience at their
own terminals, the instructions were read aloud to them by the experimenter.
Participants were paid in cash.
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based on their expected payoffs, but make decision errors based on a
quantal or probabilistic choice model, and assume other players do so
as well. Such errors may either be due to mistakes or to unobserved
random variations in payoff functions. For a given error distribution,
a quantal response equilibrium is a fixed point in choice probabilities.

The main result derived in this paper is that with continuous or
with discrete bid choices the symmetric Nash equilibrium in mized-
strategies and quantal response equilibrium of the all-pay auction turn
out to be identical if the error terms are identically and independently
distributed. In addition, this paper calculates the quantal response
equilibria of the all pay auction for two particular parametrizations:
the power-function and the logit equilibrium. The theoretical results
obtained in this paper have clear implications for experimental re-
search and have been used to suggest designs for further experiments
(Baye and Morgan 2002).

This paper consists of two parts. In the first part, the Nash
equilibrium of the (first-price) all-pay auction is analyzed. Section 2
contains the model. Following Dasgupta (1986), section 3 examines
the all-pay auction with continuous bid choices. In many laboratory
experiments, bids are constrained to integer values (e.g. pennies); the
calculation of the symmetric Nash equilibrium in mixed-strategies for
discrete bid choices is the topic of section 4. Section 5 introduces
the equilibrium concept. The second part of this paper examines the
quantal response equilibrium of the all-pay auction. In sections 6 and
7, the models presented in sections 2 and 3 are generalized to allow
decisions errors. It is shown that for any common structure of the
error term the symmetric Nash equilibrium in mixed-strategies and
quantal response equilibrium of the all-pay auction are identical. Im-
portantly, this result holds only if the error terms are identical and
independently distributed. Section 8 calculates the quantal response
equilibria of the all-pay auction for two particular parametrizations:
the power-function and the logit equilibrium. The power-function
equilibrium is based on random utility maximization with multiplica~
tive error terms while the logit equilibrium is derived from random
utility maximization with additive error terms. Section 9 contains
concluding remarks. The appendix derives the quantal response equi-
libria of the all-pay auction with multiplicative error terms.

2. The Model

Assume that there are 2 identical bidders (henceforth referred to as
firms). The “bids”, which can be interpreted as competitive expen-
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ditures, are set simultaneously. The firm spending the most obtains
the prize. Each of these firms has an identical known valuation, wv.
For instance, in a research and development (R&D) race, the bids
are R&D expenditures and the prize is a patent with corresponding
monopoly profit. In political contests, the bids are lobbying expendi-
tures and the prize is a political favor. The value is split in case of a
tie. The payoff to firm 1 is given by:

v—p; for Py >po
m(P1) =5 —p1 for Py =py (1)

—p; for Py <pPo.

Notice from (1) that the bid pi is paid whether or not the prize is
won. Competition in an all-pay auction may be risky because it can
generate negative profits. For such a bidding contest to take place,
its outcome cannot be deterministic. Each player must have at least
some chance of winning in order to be willing to participate.

3. The Nash Equilibrium with Continuous Bid Choices

Let p; denote the bid posted by firm i, i=1, 2. Notice from (1) that at
a bid p; above v, the firm with the higher bid makes negative profits.
Also, no firm is allowed to set a bid p; less than 0. The calculation of
the Nash equilibrium for the all-pay auction typically involves mixed
strategies. To see this, suppose there is a pure strategy equilibrium
with firm 1 bidding p; and firm 2 bidding po and where:

p1>p22>0

Now, consider the bid p}:
p1 = (p1+p2)/2

Since v ~ (p; + p2)/2 > v — p1, firm 1 wins the prize and earns
higher profits from bidding p} than p;. Suppose p1 = pp > 0. Then,
a firm by raising slightly its bid wins the prize for sure. Using this ar-
gument, it follows that there is not a pure?strategy Nash equilibrium
in the all-pay auction with complete information.
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3.1. Nash Equilibrium of the Symmetric All-Pay Auction

PROPOSITION 1. In the symmetric-mized strategy Nash equilibrium,
each firm bids randomly with probability 1/v in the support [0, v].
Furthermore, expected profits are zero in equilibrium. (Dasgupta 1986,
p. 536)

Next, the symmetric mixed-strategy distribution with support [p, p]
is constructed. There can be no mass points in the interval [p, 5]. The
reason is that if there were mass points in this interval, it would pay
for a rival to concentrate just below such a mass point, to increase its
payoft.

Since there are no mass points in the equilibrium density, f(p),
the equilibrium cumulative distribution function, F(p), will be a con-
tinuous function on [p,p]. The possibility of ties is not considered
until the next section, where bids are integer-valued. Notice that
when a firm bids p, it may be that p is the highest bid posted, in
which case, the firm’s profit is v — p. This happens only if the other
firm bids lower than p, an event which has probability F(p). Thus
the firm’s expected profit function is vF(p) — p. For firm 1 to be
indifferent between bidding some arbitrary bid p and 0, it must be
the case that firm 2 bids according to a distribution Fa(p) that makes
firm 1’s expected earnings at p equal to a security expected profit,
S1. Otherwise, it would pay a firm to increase the frequency for the
bid with the higher expected payoff. The equilibrium expected payoff
S1, must satisfy:

Sy =vFa(p)—p for pe(pp) (2)

In a symmetric equilibrium, Fi(p) = F2(p), and in this case, (2)
yields: ’

Fp) =212 3)

Equation (3) determines the equilibrium distribution function,
once the S constant is found from an analysis of boundary conditions,
which is the next task. Recall that there are no mass points in this
equilibrium. Given F(p) = 0, it follows that § = —p in equation (2).
Since bidding zero is a permissible strategy in this model, it must be
the case that p = 0 and hence § = 0. Given F(p) = 1, equation (2)
can be used to show that v — p = 0 so v = 5. Using the boundary
conditions, F(0) = 0 and F(v) = 1, yields the equilibrium probability
distribution. It follows that the bidder must bid so that:
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F(p)== (4)

flp) =~ (5)

To summarize, (4) specifies the mixed distribution that a bidder
must use for the other bidder to be willing to choose randomly in a
range of bids (which by construction, yield equal expected profits).
Given symmetry, the other bidder must also use the bid distribu-
tion in (4) for the other to randomize. In equilibrium, both bidders
randomize according to (4). Finally, the equilibrium distribution is
bounded between 0 and v. Also, in equilibrium, the expected pay-
off to each player is 0. Importantly, this result does not hold in the
asymmetric case.

3.2. Nash Equilibrium of the Asymmetric All-Pay Auction

We now consider the all-pay auction with v; > ve. This case is eco-
nomically interesting because in the literature of regulation (Roger-
son, 1982) and political contests (Snyder, 1989), one player (often
the incumbent) is modeled as having an advantage over a challenger.
In this game for firm 1 to be indifferent between bidding some arbi-
trary bid p and 0, it must be the case that firm 2 bids according to
a distribution Fy(p) that makes firm 1’s expected earnings at p equal
to a security expected profit, S;. Otherwise, it would pay a firm to
increase the frequency for the bid with the higher expected payoff.
Hence the equilibrium expected payoffs S; and S2, must satisfy:

Sy =uviFa(p)—p for pe(pp) (6)
Sy =voFi(p)—p for pe(p,p)
This yields:
p+S
Fi(p) = —>2 (7)

V2

p+ 5y
v1

Fy(p) =
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The equations in (7) determine the equilibrium distribution func-
tions, once the constants S1 and S are found from an analysis of
boundary conditions, which is the next task. First, note that the
lower bound of the equilibrium price distribution is different for both
bidders, Fa(p) = (v1 — v2)/v1 and Fi(p) = 0. From (7) we have
that So = —p. Since bidding zero is a permissible strategy in this
model, it must be the case that p = 0 and so S; = v; — vg. Given

F1{p) = 1, the first equation in (7) can be used to show that vo—p = 0
therefore vo = §. Thus, the boundary conditions Fy(0) = 0, F»(0) =
(v1 —v2)/v1, F1(v2) = 1 and Fs(vg) = 1 yield the equilibrium proba-
bility distributions:

p
Fi(p) = — (8)
v2
pt+wvy—w
Fap) = —— —

It follows that bidder 1 and bidder 2 randomize according to (8)
over the interval [0, ve]. In equilibrium bidder one earns an expected
payoff of v1 — v, while the second bidder earns an expected payoff of
zero. In contrast to the symmetric all-pay auction, where the expected
payoff to the auctioneer (the sum of the expected bids) is v, in the
asymmetric case the expected sum of the bids is v3/v; + ((v1 + v2) *
ve)/v3.5

To summarize:

PROPOSITION 2. In the Nash equilibrium of the asymmetric all-pay
auction, firm 1 bids randomly with probability 1/va in the support
[0, va], while firm 2 bids randomly with probability 1/v1 in the support
[0,v5]. Furthermore, expected profits are different in equilibrium.

4. The Nash Equilibrium with Discrete Bid Choices

The rules of laboratory experiments typically require that bidders
(firms) post bids in pennies. Therefore, the set of feasible decisions

5 Suppose 3 players and v1 > v9 = v3. In the asymmetric equilibrium, player
3 bids zero with probability one, while F1(p) = p/v2 and Fy (p) = (vo+p)/v1
on [0, 112]. There is another equilibrium where player 1 randomizes with F'1(p) =
pl{ve + p)/vl]—l/z, while players 2 and 3 randomize with Fo{p) = F3(p) =

[(v2 + p)/v1]"/2.
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is finite. The analysis of the mixed equilibria when the decision
space is discrete is discussed in game theory texts. Moulin (1986)
illustrates the calculation of mixed strategies for a number of sim-
ple examples, for example bimatrix games. Davis and Holt (1990)
and Lépez-Acevedo (1995) calculate mixed strategy Nash equilibrium
with discrete bid choices for a number of games used in laboratory
settings. The bid-choice games discussed in this section are much
more difficult in the sense that the range of randomization must be
determined. The intuition gained from previous section can be useful.

4.1. Nash Equilibrium of the Symmetric All-Pay Auction

The calculation of the mixed-strategy Nash equilibrium when bids
are restricted to be integer-valued is similar to the one for the con-
tinuous case. The equilibrium expected payoff S is given in equation
(9). This equation is comparable to equation (2) but equation (9) also
includes the payoff function that determines earnings when a firm’s
bid matches the other’s bid. The density, f(p;), denotes the equi-
librium probability that a price selected is p;, where f(p;) > 0 for
Pi = P15 Ut

Pr—1
S = LZ f(Pi)jl (v —pk) + f(pk)(g - Pk) (9)

i=P1

4*—2ﬂﬂem

Pi=p1

where py = p1,...,v. The first term in (9) is the expected profit from
being the higher bidder. The second term is the expected profit of
a tie at pr. At this bid, the prize is divided equally. The last term
corresponds to the expected payoff from being outbid. Equation (9)
can also be expressed as:

5‘[§Sf@)+f@w}@—p) (10)
= 1 2 k

i =P1

Pr—1
+ [1 - LZ f(Pi)"'f_(%l]] (—pk)

i =P1
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The G(pi) in equation (11) is a modified “distribution function”
that allows for the event of ties:

Pre—1

G = 3 flpo)+ LB _BETS 1)

2 v
Pi=p1

where the final equality follows from (10). In order to obtain the
support of the equilibrium mixed-strategy Nash equilibrium, consider
a set of consecutive integer-valued bids: [p1, pe, ..., v], where v is the
largest integer bid. Define py and py as the lowest and highest bids
respectively that are selected with strictly positive probability, where
p1 < pr, < pg < v. By evaluating (10) at py and using the fact that
the sum of the densities up to f(py) equals one, one obtains:

S = (1= £(pa)] (v = pu) + F(pr)(5 = p11)
) (12)

2

Since f(pg) > 0, it follows from (9) that S < v — py. Now, we
calculate the mixed strategy equilibrium for this model. Conjecture
that f(px) = 1/v, with the upper bound py = v — 1 and the lower
bound p; = pr = 0, is the symmetric Nash equilibrium in mixed-
strategies.® Next, we verify that a seller is indifferent between the
bids 0,1, ...,v — 1. By evaluating (10) at py = v — 1, one obtains:

=v—py— f(pH)

s=[F(u—2)+ﬂ”—2_i)]u—(v—1) (13)
=|:v;1+%]v——(v—1)

It is straightforward to verify from (13) that S = 1/2. An analo-
gous argument shows that at the lower bound, p;, = 0,5 = 1/2, and
similarly for intermediate prices. From equation (9), it follows that in
the event of ties the prize is divided equally. In contrast to the Nash
equilibrium with continuous bid choices, rents are not dissipated in
equilibrium in the discrete case. A possible reason is that in the dis-
crete case a firm has to bid higher money amounts to outbid a rival.

6 Solving for f(pgr), it follows that individual 2 must price so that f(pr) =

w. This specifies the mixed distribution that individual 2 must use in

order for individual 1 to be willing to choose randomly in a range of bids.
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Furthermore, in equilibrium, the expected payoff to the auctioneer
(the sum of the expected bids) equals (v — 1) + 1/2.
To summarize:

PROPOSITION 3. The probability 1/v over the set of consecutive inte-
ger-valued bids: [0, 1,..., v-1] is a mized-strategy Nash equilibrium.
Further, in equilibrium expected profits are 1/2.7

4.2. Nash Equilibrium of the Asymmetric All-Pay Auction

The calculation of the asymmetric all-pay auction with integer-valued
bids is now discussed. The equilibrium expected payoffs S; are given
in equations (14) and (15). The density, fi1(p;), denotes bidder’s 1
equilibrium probability that a price selected is p;, where f1(p;) > 0
for Pi = D1y ..., V2.

Pr—1
= LZ fZ(Pi)] ~ Pk) +fz(pk)(—2— = Pk) (14)

i=P1

+ {1— )y fz(pi)} (—px)

Pi=p1

Similarly:

= LZ fi(pi ] v2 — Pk) +f1(Pk)(§% — Pk) (15)

=pP1

+ {1 - 2—: fl(Pi):I (—pk)

Pi=D1

where pr = p1, ..., v2. Equations (14) and (15) can also be expressed
as:

Pk—1

Z fa(p f2(pk) (v1 — pk) (16)

P;=P1

7 Lépez-Acevedo (1995) examines the mixed strategy equilibria with continu-
ous bid choices in this type of games.
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Pr—1 )
LZ f2(pi) H (=),

LZ fapi) + fl"”“)} (02 - 1) (17)

i =P1

Pr—1
i=P1

The G;(px) in equations (18) and (19) are modified “distribution
functions” that allow for the event of ties:

Pr-1
k) Pk + S
i = N 1
Gi(pk) = Z fi(pi) o (18)
Prk-1
+ S
Galp) = 3 e+ L2 BESL )
Pi=p1

where the final equality follows from (14) and (15). In order to obtain
the support of the equilibrium mixed-strategy Nash equilibrium, con-
sider a set of consecutive integer-valued bids: [p1, pa, ..., v2], where vy
is the largest integer bid. As before, define py and pgy as the lowest
and highest bids respectively that are selected with strictly positive
probability, where p1 < pr < pg < vo. By evaluating (18) and (19)
at py and using the fact that the sum of the densities up to (pz)
equals one, one obtains:

S1=[1- falpw)) (v1 = p&) + folpr) (5 —pr)  (20)

V1

=vi —pH — fZ(PH)?

Since fi(py) > 0 and fa(pg) > 0, it follows from (20) and (21)
that S1 < vi — py and:

S = (1= (o)l (2~ p1) + 1) (5 —pm)  (21)

v2
= vy — pH — fl(pH)'é"
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S2 < vg —pH. Now, we calculate the mixed strategy equilibrium
for this model. Conjecture that fo(px) = 1/v1 and f1(px) = 1/vo with
the upper bound py = vo — 1 and the lower bound p; = pr = 0, is
a Nash equilibrium in mixed-strategies. Next, we verify that a seller
is indifferent between the bids 0, 1, ..., v2 — 1. By evaluating (16) and
(17) at pg = vy — 1, one obtains:

S1= F2(’()2—2)+‘f'2'(v—~25_—1):! ’U]—(’Ug—l) (22)
= -____vl—v2+v2—l +L] vy — (vg — 1)
L v1 2’U1
So = Fl(v2—2)+W} ’112—(1)2—1) (23)
_ [Uz—l +i] vy = (vg — 1)
Vg 2v9

It is straightforward to verify from (22) and (23) that S; = v; —
vy +1/2 and S = 1/2. An analogous argument shows that at the
lower bound, p;, =0, S; = v; —v2+1/2 and 83 = 1/2, and similarly
for intermediate prices. To summarize:

PROPOSITION 4. In the Nash equilibrium of the asymmetric
all-pay auction with discrete bid choices, firm 1 bids randomly with
probability 1/vy and firm 2 bids with probability 1/vy in the support
[0,...,v3]. Furthermore, expected profits are different in equilibrium.

Next, the standard Nash equilibrium analysis of the all-pay auc-
tion is generalized to allow for endogenously determined decision “er-
rors”.

5. The Quantal Response Equilibrium?®

The quantal or discrete response has its origins in stimulus/response
models in biology and in statistical limited dependent variable models
such as probabilistic choice (in economics and psychology). Proba-
bilistic theories of choice can be divided in two basic types: constant
utility models and random utility models. In the first interpretation
the utility is constant but the decision rule is random (Luce, 1959;
Tversky, 1972a). By contrast, the second interpretation assumes that

8 This section draws heavily on Lépez-Acevedo (1997).
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utility is random while the decision rule is constant (Thurstone, 1927;
McFadden, 1984). These approaches are formulated for individual de-
cisions where the probability of making a decision is a function of the
expected payoffs of all possible decisions.

There are many ways to model decision errors. One particularly
simple approach is based on the discrete choice theory first proposed
by Luce (1959). Let u; and us denote the expected utility associated
with decisions 1 and 2 respectively. Luce proposed a model in which
choice probabilities are determined by ratios of expected utilities:

Pr(choose decision i) = L 1,2 (24)
uy + ug

These choice probabilities reflect boundedly rational behavior be-
cause the player does not always choose the decision with the highest
utility.

In McFadden’s approach (1984), the modeler can only imper-
fectly observe the characteristics influencing an individual’s choice.
For example, the »; in the equation above represents the observed
parts of an individual’s utility, but the optimal decision may also de-
pend on unobserved utility elements that are random from the point
of view of an outside observer. The distribution of the random util-
ity elements determines the form of the probabilistic choice function
(e.g. logit, probit), as discussed below. These choice functions are
also called “quantal response functions”.

The quantal response functions discussed above are used to mo-
del individual decisions. Capturing decision error in a way that is
clearly spelled out and not ad hoc is a difficult task. The quantal
response equilibrium does this based on elements borrowed from the
discrete quantal choice theory developed by Luce (1959), McFadden
(1984), and Thurstone (1927). The added complexity of applying the
quantal response equilibrium to game theory —in contrast to indi-
vidual choice— is that the choice probabilities of the players have an
important interactive component, since they are simultaneously de-
termined in equilibrium. In a quantal response equilibrium, a player’s
beliefs about others’ actions will determine the player’s own expected
payoffs, which in turn determine the player’s choice probabilities via
a quantal response function. The model is closed by requiring the
choice probabilities to be consistent with the initial beliefs.®

9 Other authors have provided alternative explanations such as that each
player privately observes his/her payoff with some noise and the distribution over
the noise is common knowledge. Players do not update given their realization
(i.e. they are not Bayes consistent).
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To illustrate the effects of decision errors in a market model,
consider the quantal response equilibrium for a simple Prisoner’s
Dilemma game. In this game, each player simultaneously chooses
between cooperation C, and non-cooperation N. The profits from de-
fection, w4, exceed those from cooperation, w., which in turn exceed
the profit =, from the Nash equilibrium: 74 > 7. > 7, > 0. The
only Nash equilibrium outcome is (7p,, 7).

¢ P2 ¥

O k|0 @

Plager |
Nom 0 T T

Next, consider the effects of decision errors determined in (24).
Let ¢ denote the probability that player 2 chooses the cooperative de-
cision C. Given this probability, player 1’s expected payoff is uc = o7,
for decision C and uy = omg+ (1 — o)my, for decision N. Using Luce’s
choice function (24), player 1 will choose decision C with probability:

OTe

Pr(choose decision C) = (25)

ome+omg+ (1 —o)my

The equilibrium consistency requirement is that choice probabil-
ities correspond to beliefs. In particular, the right side of equation
(25) must equal o, which provides an equation that can be solved:'®

Te — Mp

g=——eTn (26)

Te— T + 7Ty

10 Note that the Nash equilibrium condition, ¢ = 0, does not satisfy (26).
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since N is a dominant strategy in the Nash game without errors, as
long as g > m., o can be interpreted as the probability of making an
error.

To illustrate the random utility interpretation, consider the fol-
lowing example. Let the subject’s utility derived from alternatives 1
and 2 be written as:

Vl* =v;+ €1

V2* =vg + €2

where ¢1 are the residual random elements which are i.i.d. log Weibull
distributed!! with parameter A. Now consider the probability that
the first alternative will be chosen:

Pr(choose 1) = Pr(v; + 1 > vy +¢e2)
= Pr(vy — vy > €2 — €1)

= F(’l)l - ’02),

where F(-) denotes a cumulative distribution. Then the probability
that an individual chooses alternative 1 can be expressed in terms of
the logistic error function (McFadden, 1984):

ez\v]

Pr(1) (27)

As 1/) goes to oo in equation (27), it can be shown that the variance
of the error terms tends to infinity. Thus the individual will choose
between decisions 1 and 2 with equal probability, regardless of the
expected payoffs, as can be seen from the limiting case of (27) with
X = 0. The error variance, 1/ goes to 0 as A goes to co, and therefore,
it follows from (27) that the probability of choosing the option with
the higher expected payoff goes to 1.

The distribution of the error term determines the probabilistic
choice function (e.g. logit, probit and power-function). These ran-
dom residuals can be interpreted as being caused by decision errors.

11 The log-Weibull distribution is as follows: F(z) = exp [— eTp (Agz)],

where A is a location parameter and B is a scale parameter
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Under the decision error interpretation, these choice probabilities re-
flect boundedly rational behavior, in the sense that an individual does
not always choose the decision with the highest utility. These choice
probabilities reflect a tendency toward utility maximization because a
non-optimal choice is less likely when the difference in the underlying
utilities is large. The quantal response equilibrium incorporates the
framework into an equilibrium analysis.

Following McKelvey and Palfrey (1994) a quantal response equi-
librium is a fixed point in choice probabilities. Define = as the set
of all possible combinations of the expected payoffs for all players in
a finite normal form game. Let 6 be the Cartesian product of the
mixed strategies for all players, and let p be an element of &, i.e. p
specifies a particular mixed strategy for each player. Denote a vector
of all expected payoffs as e(p). Thus, e(p) maps a particular array of
mixed strategies, p, into a vector of players’ expected payoffs, 7. A
discrete choice function ¢ maps expected payoffs into a mixed strat-
egy for a single player. The function o is assumed to be continuous
and monotonically increasing in the payoffs. Let T represent the re-
sulting mapping from the set of all possible combinations of players’
expected payoffs to their choice probabilities, T : 7 — §.

To summarize, e(p) : § — 7 maps mixed strategy probabilities
to expected payofls, and T7 : # — § maps expected payoffs to mixed
strategy probabilities.

The equilibrium is a fixed point:

DEFINITION. A Quantal Response Equilibrium (QRE) is a p such
that p = T (e(p)).

The Brouwer fixed point theorem implies the existence of such
an equilibrium, since T7(e(p)) is a continuous function that maps a
compact set § onto itself.1?

In what follows, two common specifications of the quantal re-
sponse equilibrium are examined: the additive-error quantal response
equilibrium and the multiplicative-error quantal response equilibrium.
The first functional from is based on random utility maximization
with additive error terms and it is a standard approach to model
decision errors in normal-form games (McKelvey and Palfrey, 1994).
The second specification follows from random utility maximization
with multiplicative error terms. This framework has proved to be a
useful way to model decision errors in models of price competition
since it often leads to tractable solutions and comparative statistics
results (Lépez-Acevedo, 1997).

12 This result is due to McKelvey and Palfrey (1994).
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Our primary focus in section 6 and section 7 is to derive a general
statement of the Nash and quantal response equilibrium equivalence
of the all-pay auction. However, in the process of finding it, proposi-
tions that are needed to derive this equivalence are established.

6. Equivalence of Equilibria with Continuous Bid Choices

This section provides an analysis of the quantal response equilib-
rium with additive error terms for the symmetric and asymmetric
all-pay auction with continuous bid choices (a similar proof for the
multiplicative-error quantal response equilibrium is derived in the ap-
pendix).

The following proposition presents the conditions under which
equivalence between the Nash and the quantal response equilibria
occurs in the symmetric all-pay auction model.

6.1. Quantal Response Equilibrium of the Symmetric All-Pay Auction

PROPOSITION 5. Consider a game in which the strategy space, S;,
of player i is an interval of actions, s € [0,v]. Suppose there ex-
ists a Nash equilibrium to the game in which player i plays each ac-
tion with probability f(s) = 1/v. Let n}(s) denote i’s profit given
that all other players play their equilibrium mized strategies, and sup-
pose furthermore that nf(s) > 0V s € [0,v]. Then there exists an
additive-error quantal response equilibrium when the error structure
satisfies ¢; > O(F(0) = 0, no mass points at zero) and the errors
are identically independently distributed. Furthermore, this additive-
error quantal response equilibrium is identical to the Nash equilibrium
described above.

PROOF. It suffices to show that bidder ¢ will choose strategy s with
equal probability, given that the other bidders choose strategies as
described in the proposition. Since n}(s) = # > 0V s € [0,], it
needs to be shown that:

1
Pr(s) =Pr(f +e; = max 7+ei)= -~ (28)

Let F be the common cumulative distribution function of the ¢,
and let f be the corresponding density. Equation (28) is true since:
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Pr(v-+e;= max F+e)= Z°f(e) [17()de
i#]
= T e = LT (29)

Notice that in equation (29), the i subscript is dropped from the
error terms in the second expression since it is assumed that the errors
are identically and independently distributed. The appendix shows
the results assuming identically, independently distributed errors but
in the case of multiplicative errors. The intuition behind this result
is that expected profits in the mixed-strategy Nash equilibrium are
equal for all bids in the support [0, v]. Hence if the rival is using his
Nash equilibrium, the bidder’s best quantal response is to spread bid
decisions uniformly in the support [0, v]. ]

6.2. Quantal Response Equilibrium of the Asymmetric All-Pay Auc-
tion

The next proposition examines the quantal response equilibrium of
the asymmetric model.

PROPOSITION 6. Consider a game in which the strategy space, Sj,
of player i is an interval of actions, S € [0,va],i = 1,2. Suppose
there exists a Nash equilibrium to the game at which bidder 1 plays
each action with probability f1(s) = 1/ve and bidder 2 with probability
f2(s) = 1/vy. Let ni(s) denote i’s profit given that the other bidder
plays his equilibrium mized strategy, and suppose furthermore that
n¥(s) > 0V s € [0,v2]. Then there exist an additive-error quantal re-
sponse equilibrium when the error structure satisfies ¢; > 0(F(0) =0,
no mass points at zero) and the errors are identically and indepen-
dently distributed. Furthermore, this additive-error quantal response
equilibrium is identical to the Nash equilibrium described above.

PROOF. It suffices to show that player 1 will choose strategy s with
equal probability, 1/vg, given that player 2 chooses his strategies as
described in the proposition. Since 7n}(s) = 7; > 0V s € [0,vg], it
needs to be shown that:

1
Pr(my+e1; = ; glail(axﬁ +e1) = e (30)
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_ 1
Pr(To+egj = max Tp+eg)=—.
J is max no

This is true since:

o0
P?"(7—1'1+81j max 71 +e1)= [ f(e1 HF e1)dey (31)
j is max 0 )

3

ni

(Flea))™ 7 _ 1
0o m

)
PT‘(TT'2+€2]‘ = max 7o+teg)= [ fle2 HF g9)des
j is max 0 i1
J

_ (Fle2))™ vl

n2 0o mn2

The equivalence between the Nash and quantal response equi-
libria of the asymmetric model arises because a player’s i expected
profits in the mixed-strategy Nash equilibrium are equal at all bids in
the support [0, v2]. Hence, if player 2 is using his Nash equilibrium,
player 1's best quantal response is to spread bid decisions uniformly
with probability 1/vs in the support [0,v3]. Similarly, if player 1
is using his Nash equilibrium, player 2’s best quantal response is to
spread bid decisions uniformly with probability 1/v; in the support

[0, vq]. ]

7. Equivalence of Equilibria with Discrete Bid Choices

Thus far, it has been shown that the Nash and quantal response equi-
libria for continuous bid choices are identical. This section is devoted
to examining such results in the discrete choice framework. As be-
fore, the symmetric case is considered first. Then, the asymmetric
model is examined. The intuition gained from the previous section
can be useful in deriving the quantal response equilibrium for discrete
choices.

7.1. Equivalence of Symmetric Equilibria

PROPOSITION 7. Consider a game in which the strategy space, Sim,
of player i is a discrete set of actions, syn € Sim,m = l..n, where
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*

Sim < v. Suppose there exists a Nash equilibrium to the game, s},
at which player i plays each action in Sim C Sim, with equal proba-
bility (i.e. the Nash equilibrium is s},, = 1/k V s, € Sim, where k =
number of elements in S'im). Let n}(sim) denote i’s profit given that
all other bidders play their equilibrium mized strategies, and suppose
furthermore that w}(sim) > 0V 8im € Sim while 7F <0V sim & Sim.
Then there exists an additive-error quantal response equilibrium when
the error structure satisfies €;m = 0(F (0) = 0, no mass points at zero)
and the errors are identically and independently distributed. Further-
more, this additive-error quantal response equilibrium is identical to
the Nash equilibrium described above.

PROOF. It suffices to show that player ¢ will choose each strategy in
Sim with equal probability, given that the other bidders choose strate-
gies as described in the proposition. Clearly, since u;; = 7 (sit) + €,
no strategy outside Sim will be chosen (to do so would yield non-
positive payoffs for all realizations of s;,,, but non-negative payoffs
are guaranteed for s;, € S’im, and the probability of “ties” at zero
is zero since F(0) = 0). Finally, since n](si;) = nf(sy) = 7@ >
0V sij, 54 € Sim, it remains to be shown that:

1
Pr(T+e;= max 7+en)=— (32)
J 18 max k‘L
This is true since:

Pr(f4+e;;= max 7 +ej)=
j is max

o3

fle) LllF(s)de (33)
(FE) = _ 1
o bTE

Notice that in equation (33), the 7 subscript is dropped from the
error terms in the second expression since it is assumed that the errors
are identically and independently distributed. (]

7.2. Equivalence of Asymmetric Equilibria

Next the quantal response equilibria of the asymmetric all-pay auction
with discrete bid choices are examined.
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PROPOSITION 8. Consider a game in which the strategy space, Sim,
of the player i is a discrete set of actions, sy, € Sim,m = 1..n and
i = 1,2 where s;;, < va. Suppose there exists a Nash equilibrium to
the game, sj,,, at which player i plays each action in Sim C Sims
with equal probability (i.e. the Nash equilibrium, si,, = 1/ko and
85m = 1/k1 ¥ 83, € Sim, where ky = number of elements in Sy, and
k1 = number of elements in the strategy space A;n with S”im C Aim)-
Let 7} (sim) denote i’s profit given that the other player plays his
equilibrium mized strategies, and suppose furthermore that n}(s;m) >
OV sim € Sim while 77 < 0V sy € Sim. Then there exists an
additive-error quantal response equilibrium when the error structure
satisfies eym = 0(F(0) = 0, no mass points at zero) and the errors are
identically and independently distributed. Furthermore, this additive-
error quantal response equilibrium is identical to the asymmetric Nash
equilibrium described above.

PROOF. It suffices to show that player i will choose each strategy in
Sim with equal probability given that the other player chooses strate-
gies as described in the proposition. Clearly, since u; = 7] (s4) + €,
no strategy outside S, will be chosen (to do so would yield non-
positive payoff for all realizations of s;,, but non-negative payoffs are
guaranteed for s;,, € S;,, and the probability of “ties” at zero is zero
since F(0) = 0). Finally, since 7} (si;) = ) (sy) =7 > 0V 845,54 €
Sim, it remains to be shown that:

1
Pr (7r1 +e1;,= max m +€11) ;{:—— (34)
1

j is max
Pr(ﬁ'2+52j= ~max 77'2-!—&‘21):—
j is max ko

This is true since:

[ee]
Pr( +e15 :j gla;ﬁaxﬁl +e11) gf €1 HF e1)deq (35)
J#1

(F(e1)" °|° _ 1
k1 0o ki

o0
Pr(fa+ ey = max 7g+e91) = [ flez) I l F(e2)des
7 is max 0 i1
J
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(F(e2))™ °|°_ 1

ka2 0 k2

The above set of propositions show why the quantal response
equilibrium and Nash distribution will be the same when the Nash
mixed distribution is a uniform distribution and the error terms are
identically and independently distributed. Next, the quantal response
equilibrium of the all-pay auction for two particular parametrizations
is computed. ]

8. Parameterizations of Quantal Response Equilibrium

In what follows, the logit and the power-function equilibria of the
all-pay auction are computed. The first one is based on random util-
ity maximization with additive error terms. The second equilibrium
specification follows from random utility maximization with multi-
plicative error terms. It is well known that if the error terms are log
Weibull distributed then the best response functions take a logistics
form. Thus for any A > 0, the logistic quantal response equilibrium
condition is given by:

e MvF(p)-p]

flo)= —— (36)
w

o= })eA[vF(:z:)—a:]dx
0

where u is a constant independent of p. The first equation in (36)
is a nonlinear differential equation in the price distribution F(p). In
order to obtain F(p) we first multiply both sides of the top equation
in (36) by —Ave=*F(P) which yields

_ —Ap
Cavf (p)eF®) = ’\T @37)

Integrating over all values of p, i.e. from p, to p*, we have

px Px —\ve™ P
S =i (ple” " Pap = | —"—dp (38)
Pa Pa

The resulting equation is written as
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F(px - *
— () (p)zve pp

(39)
F(pa) ,Lt Da

The next task is to determine p from an analysis of boundary
conditions. Since negative prices produce no profits, conjecture that
F(ps) = 0, with p, = 0. Let p denote the upper bound of the bid
distribution. Using the boundary condition, F(0) = 0, equation (39)
becomes:

eEE) = L= g (40)
I

Now consider the upper bound p. From (37), p > v implies
that f(p) > 0. Since bids above v produce 0 profits, conjecture that
F(p) = 1, with p = v. This conjecture in turn implies that p = v.
Substituting u back into (40), we have

e—)\vF(p) = P (41)

It is readily verified from (41) that the equilibrium probability
functions is:

Fp) == (42)
v

which also satisfies the working assumption used above: F(0) = 0

and F(v) = 1. Equation (42) is also the Nash equilibrium of the

symmetric all-pay auction model.

Next the power-function quantal response equilibria are com-
puted. As shown in the appendix, when the error terms are dis-
tributed as equation (52) the relevant decision rule is the power
function. The power-function quantal response equilibrium condition
must satisfy:

(o 2o
m

o= 3 ([re-n 2oy

where u is a constant independent of prices. The probability density
in (43) is obtained by solving recursively the first equation in (43),

flpk) = (43)
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beginning with the lowest bid and working upward. For simplicity,
let A = 1. Since ties are possible with integer-valued bids, it follows
that f(0)/2 > 0. By evaluating (43) at the lowest bid pr = 0, it
follows that 4 = v/2. The substitution of p back into (43) results in
the following expression:

F(pg-1)v = py (44)

Let pr = z. Then, the above equation is written as:

z—1
> fliw == (45)
=0
for = = 1,...,v. Consider z = 1. Then, it follows from (42) that
£(0) = 1/v. Assume z = 2. Then, equation (45) yields:

FO)+701) =2 (46)

Since f(0) = 1/v, it must be the case that f(1) = 1/v in (46). A
similar argument shows that z = v yields:

v—1

+flv-1)=1 (47)

It is readily verified from (47) that f(v —1) = 1/v. Now consider
A > 1. Notice that f(0) > 0 implies that x = (£(0))~!(v/2). Con-
jecture that the equilibrium probability is 1/v. From (42), it follows
that u = v(1/2). By evaluating (47) at pr = v — 1 and using the
solution for p, one obtains:

2>‘(|:F(’U—2)+&2——1'2]’U—('U——1)))‘

v

Substituting the conjecture 1/v in both sides of (48), it follows
that 1/v satisfies (47). A similar argument shows that the uniform
distribution, 1/v, satisfies intermediate bid values.

Thus, for any functional form of the error term, the Nash and
quantal response equilibria of the all-pay auction are the same as long
as the error terms are identically and independently distributed.

flo-1)=

(48)
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9. Conclusions

This paper examined the quantal response equilibrium of the (first-
price) all-pay auction model. A striking result derived is that for any
structure of the error term the Nash and quantal response equilib-
rium of the all-pay auction are identical if the error terms are inde-
pendently and identically distributed. This is because the expected
profits in the mixed?strategy Nash equilibrium are equal at all bids
in the support of the equilibrium distribution. Hence, if the rival is
using his Nash equilibrium, the seller’s best response is to spread bid
decisions uniformly in the support. In addition, it is shown that this
result holds in the asymmetric case with two players. This paper also
presents a step-by-step procedure for calculating the quantal response
equilibria, which was summarized in section 8. This procedure was
applied to two parametric quantal response functions, which we call
the power function and the logit. We also showed how to calculate
mixed-strategy Nash equilibria using the discrete bid choices that are
common in laboratory experiments.
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Appendix

In this appendix I prove the equivalence of the Nash and quantal re-
sponse equilibria with multiplicative error terms of the all-pay auction
for continuous and discrete bid choices.

PROPOSITION 9. Consider a game in which the strategy space, Si, of
player i is an interval of actions, s € [0,v]. Suppose there exists a
Nash equilibrium to the game at which player i plays each action with
probability f(s) = 1/v. Let n}(s) denote i’s profit given that all other
players play their equilibrium mized strategies, and suppose further-
more that 7{(s) > 0V s € [0,v]. Then there exists a multiplicative-
error quantal response equilibrium when the error structure satisfies
g; 2 O(F(0) = 0, no mass points at zero) and the errors are identically
and independently distributed. Furthermore, this multiplicative-error
quantal response equilibrium is identical to the Nash equilibrium de-
scribed above.

PROOF. It suffices to show that player i will choose strategy s with
equal probability, given that the other players choose strategies as
described in the proposition. Since n}(s) = 70 V s € [0, v], it needs
to be shown that:

1
Pr(7e; = j max TEy) = - (49)

Making a logarithmic transformation, we have:

Pr(InT+1ne; = max In7 +lne;) (50)

j is max

Let ¥ = In7. Then, equation (50) can be written as:

Pr(t+Ine; = max o +Ineg;) (51)

7 is max

Let G(*) denote the distribution of ¢ such that:13

Gle)=e " cecl0,0) A>0 (52)

Define a transformation of the error term: « = ln or ¢ = e*.

Substitute e” for ¢ in (52) to obtain the distribution function:

13 In the analysis that follows, the i subscript is dropped from the error terms
since the errors are i.i.d.
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HE)=e"" (53)
which is a log Weibull distribution with parameter \. When an ad-
ditive random utility error, «, is log Weibull distributed, Luce and
Suppes (1967) have shown that the standard decision rule is the logit:

R (54)

Since the logarithmic transformation of the multiplicative error
in (49) is additive in the logarithm 7, the relevant probabilistic choice
function is the logit formulation with % replaced by log 7 as follows:

e)\ﬁ — e/\log? — f)\ (55)

and the logistic choice rule in equation (53) reduces to the power func-
tion rules in (56). The power-function quantal response equilibrium
selects all options with equal # > 0:

7_1' 1

T == 56

niA n (56)
even when 7 = 0, since lim = — 0T, 1

Multiplicative-Error Quantal Response Equilibrium of the Symmetric
All-Pay Auction

PROPOSITION 10. Consider a game in which the strategy space, Sim,
of player i is a discrete set of actions, s;m € Sim,m = l..n. Sup-
pose there exists a Nash equilibrium, s3,,, to the game at which player

i plays each action in Sy C Sim with equal probability (i.e. s, =
1/kV s}, € Sim, where k = number of elements in éim), Let ¥ (sim)
denote i’s profit given that all other players play their equilibrium
mized strategies, and suppose furthermore that n}(sim) > 0V sim €
S‘im while 77 <0V sjm ¢ 5im. Then there exists a multiplicative-
error quantal response equilibrium when the error structure satisfies
eim = 0(F(0) = no mass points at zero) and the errors are identically
and independently distributed. Furthermore, this multiplicative-error
quantal response equilibrium is identical to the Nash equilibrium de-
scribed above.
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PROOF. It suffices to show that player ¢ will choose each strategy in
Sim With equal probability, given that the other players choose strate-
gies as described in the proposition. Clearly, since u; = =} (s4)ei, no
strategy outside S, will be chosen (to do so would yield non-positive
payoff for all realizations of s;,,, but non-negative payoffs are guaran-
teed for s;y € gim, and the probability of “ties” at zero is zero since
F(O) = 0) Finally, since wf(sij) = 71';((81'1) =7 >0V 54,84 € é’im,
it remains to be shown that:

1
PT(?T’Eij max 7e;) = — (57)
j is max k
This is true since:
o0
Pr(feij = max 7egn)=[f HF (58)
j is max 0
J#1
_ (FE)* To1
Tk ok

Multiplicative- Error Quantal Response Equilibrium of the Asymmet-
ric All-Pay Auction

PROPOSITION 11. Consider a game in which the strategy space, Sim,
of player i is a discrete set of actions, sim € Sim,m = 1,...,n and
i = 1,2, where sim < vy, Suppose there exists a Nash equilibrium
to the game, s},,, at which player i plays each action in Sim C Sim,
with equal probability (i.e. the Nash equilibrium, si,, = 1/k2 and
85m = 1/k1 V s5,, € .§'¢m, where kg = number of elements in Siy
and k1 = number of elements in the strategy space Aim, gim C Aim ).
Let 7} (sim) denote i’s profit given that all other players play their
equilibrium mized strategies, and suppose furthermore that ©}(sim) >
0V s;m € Sim while 7 L0V sim ¢ Sim. Then there ezists a
multiplicative-error quantal response equilibrium when the error struc-
ture satisfies €;m > 0(F(0) = 0, no mass points at zero) and the er-
rors are identically and independently distributed. Furthermore, this
multiplicative-error quantal response equilibrium is identical to the
Nash equilibrium described above.
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PROOF. It suffices to show that player i will choose each strategy in
Sim with equal probability given that the other player chooses strate-
gies as described in the proposition. Clearly, since uy = 7} (s4)ei, no
strategy outside S;,,, will be chosen (to do so would yield non-positive
payoff for all realizations of s;,,, but non-negative payoffs are guaran-
teed for s;,, € gim, and the probability of “ties” at zero is zero since
F(0) = 0). Finally, since ﬂ‘Z(Sij) = W;(Sil) =7 >0V ;5,54 € Sim,
it remains to be shown that:

1

Pr(ﬁlelj = max 7?1611) = — (59)
j 18 max k1

Pr(ﬁ'zsg]’ = _max 7ga1) = —.
j 45 max ko

This is true since:

oo
PT’(’I_l'lElj = max men) = [ f(e1) HF(fl)dEI (60)
j is max 0 ot

_ (Fle))o °[°=
0o ki

= P

o0
Pr(moeg; = max wae21) = [ flea HF £9)deo
j is max 0 i1
j

(F(e2))*e °|°_ 1
ko o ko



