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Resumen: Se propone un modelo para descomponer los precios de la electrici-

Abstract:

dad en dos procesos estocasticos independientes: uno que representa el
comportamiento “normal” de los precios y otro que capture los “saltos”
temporales. Para cada componente se especifica un pardmetro de re-
versiéon a la media. Para identificar tales componentes especificamos un
modelo estado-espacio con cambio de régimen. Al utilizar los precios de
la electricidad de Nueva Gales del Sur estimamos el modelo aplicando
la metodologia de Kim (1994). Finalmente, se realizaron simulaciones
con el método bootstrap para estimar la contribucién esperada de cada
componente en el precios total de la electricidad.

We propose a model that decomposes electricity prices into two inde-
pendent stochastic processes: one that represents the “normal” pat-
tern of electricity prices and other that captures temporary shocks, or
“jumps”, with non-lasting effects in the market. Each contains spe-
cific mean reverting parameters to estimate. In order to identify such
components we specify a state-space model with regime switching and
apply the Kim’s (1994)filtering algorithm to estimate the model for
the mean adjusted series of New South Wales’ electricity prices. Fi-
nally, bootstrap simulations were performed to estimate the expected
contribution of each of the components in the overall electricity prices.
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1. Introduction

When considering deregulation of the electricity industry, it is first
necessary to determine a mechanism to price electricity in a com-
petitive framework given the non-storability of electricity and the
permanent need for maintaining the balance between demand and
supply. Now, after more than ten years of international experience in
competitive electricity markets, a set of alternative mechanisms exist,
based on the interaction between the demand and supply, that war-
rant the uninterruptible operation of the power market. However, the
specific characteristics of the industry and the decentralized decisions
about when, where and how much power to produce have resulted
in greater price volatility, including huge spikes in prices. For exam-
ple it is not uncommon to see power price levels that peak at 100
times the normal rate. These characteristics of electricity spot prices
have encouraged the development of financial derivatives that help
market participants to hedge price risks in the new and volatile envi-
ronment. Pricing those financial instruments has become one of the
main topics in the research agenda that traditional financial literature
has yet to satisfactorily model. In particular, the high dependence
of such derivatives on assumptions regarding the stochastic processes
that follow the underlying assets has opened a discussion about what
models best fit the particulars of electricity spot prices. This study
tries to contribute to the still developing discussion on modeling elec-
tricity prices in a deregulated market.

The standard approach to modeling electricity prices has been
taken from the theory of finance. Some of the first attempts to model
electricity prices assumed standard diffusion processes such as Geo-
metric Brownian motion or Ornstein-Uhlenbeck types of processes.
However, although they aim to capture some characteristics of elec-
tricity prices, such as its strong mean reversion, they did not capture
the presence of spikes in prices.! One natural method of modeling
such spikes was to use the diffusion-jump model developed by Press
(1967). Press considered that the daily (log) returns in security mar-
kets can be divided in two components: the continuous diffusion part,
which can be described by a Wiener process, and a discontinuous
jump that represents shocks in the market and that can be modeled
as a compound Poisson process. Under this specification, the resulting
distribution of the (log) prices becomes a Poisson mixture of normal

L For a review of the main characteristics of electricity prices in deregulated
markets, see Clewlow and Strickland (2000).
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distributions whose parameters have to be estimated simultaneously.
This approach was later used to model all types of financial instru-
ments and became one of the standard models for series that present
continuous jumps in their paths. In modeling electricity prices this
jump-diffusion part is, in general, added to mean reversion models to
account for the relatively short life of the jumps.

Examples of applications of the diffusion-jump model include
Johnson and Barz (1999), who fitted several diffusion models to elec-
tricity prices in different markets. They found that the best fit was
obtained by mean-reverting models with jumps; Knittel and Roberts
(2001), using US electricity prices, estimated jump diffusion models
with fixed and time dependent jump intensity but they found that the
performance of such models is poor; and Escribano, Pefia and Villa-
plana (2002), who combined jump processes with stochastic volatility.

Although appealing, such jump-diffusion approaches have some
limitations in practice. The main problems come from an identifica-
tion problem, because the resulting distribution of the (log) prices is
a mixture of normal distributions and the estimation methods imply
the use of the same data to estimate the parameters of both pro-
cesses simultaneously (see Clewlow and Strickland (2000), and Huis-
man and Mahieu (2003)). The outcome of estimating such models
is well known. Bates (1995) has documented that the jump-diffusion
specification tends to capture small and high-frequency jumps, which
is exactly the opposite of what is relevant in the study of electricity
prices.

Alternatively, there is a more natural approach to model such
spikes in electricity prices which assumes a diffusion process aug-
mented with regime-switching. Sudden jumps in electricity prices are
always related to the state of the generation and transmission system.
If there is a shortage of electricity (because some lines become con-
gested or because of the sudden break-down of a generation plant),
market prices adjust drastically to rebalance the supply and demand
of electricity. This is the response in prices regardless of the policy
with respect of the maximum level of prices that can be achieved in
the market.

In the last few years there has been an increase in the use of
regime-switching models in the literature. Examples of this trend
include Deng (2000), who developed a general model in which the
regime-switching is used to capture the seasonal components of elec-
tricity prices; Chourdakis (2002), who generalized the idea of discrete
regime-switching models to a continuous framework; and Huisman

and Mahieu (2003) who observed the need for modeling jumps as
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regime-jumps as a way to separately estimate the parameters of the
“normal” component of electricity prices.

However modeling electricity prices as a switching Markov pro-
cess implies that the effect of a shock in price tends to die out rather
quickly, even when new jumps are allowed for the following periods.
A close inspection of electricity price raises some doubts about us-
ing only a switching Markov process, as the effects of price shocks in
this market do not die out quickly. If that is the case, the scenario
in which the effects of shocks in prices remain at least for a while
would be an empirically testable feature of electricity as a stochas-
tic process. For that event we propose a model in which electricity
price is compounded by two parts: what we call the “normal” be-
havior of prices and its “jump” component. Specifying separately the
“‘jump” component as a mean reverting process with regime-jumps
will allow us to measure and test the significance of its reverting pa-
rameters. On the other hand, following most of the literature,? we
employ an Ornstein-Uhlenbeck type process to represent the “nor-
mal” component. Such model specification is flexible enough to allow
some extensions; for example, to allow the conditional probabilities
to depend upon some exogenous or predetermined variables, or to
specify a stochastic volatility or a functional form of the seasonal
component of electricity prices.

In this study, in order to focus our attention on the jumps and
spikes of electricity markets, we abstract from the seasonality and
other components of prices and estimate the model for the Australian
market. To estimate the probabilities of the regimes, the unobserv-
able variables and the parameters of the diffusion processes, the model
is treated as a state-space model with regime switching and the es-
timation is made using the algorithm developed by Kim (1994), who
extended the Hamilton Markov-switching model to the state-space
representation of dynamic linear models. Finally we propose a boot-
strap simulation to estimate expected electricity prices.

The remainder of the article is organized as follows. In the next
section we describe briefly how prices are determined in a deregulated
electricity sector. In section three we present the model, and in section

2 See for instance Lucia and Schwartz (2000), Knittel and Roberts (2001),
Johnson and Barz (1999), Escribano, Pefia and Villaplana (2002), Deng (2000),
and Huisman and Mahieu (2003). In particular, Escribano, Pefia and Villaplana
(2002) reported unit root tests that reject its presence in several electricity prices
in favor of the alternative of mean reverting. There are also some studies that
allow for non-mean reverting behaviour, see for example De Vany and Walls (1999)

and Leon and Rubia (2001).



DECOMPOSING ELECTRICITY PRICES 31

four we describe the estimation method. Finally in section five we
present the results for the demeaned Australian electricity prices, the
estimation of the model and the bootstrap simulation.

2. How Power Prices are Determined

As in any other market, competitive electricity prices are determined
by the interaction of demand and supply. Ideally the price clear-
ing mechanism for this market will involve a two-side biding process,
one for each side of the market. However, the atomization of the
demand side has been one of the main obstacles to its complete im-
plementation. Alternatively, many countries have adopted a one-side
bid mechanism or have limited participation to customers with high
electricity demand, including the distribution companies that buy
electricity in the wholesale market and then distribute the power to
small consumers. In fact, the implementation of a supply side bid
mechanism, sometimes with the participation of large customers on
the demand side, is considered the first step towards the liberalization
of the sector.

In practice the one side bid mechanism may be described as fol-
lows. For each trading period (in general for each hour of the day) all
the private power generators submit prices and the amount of power
that they are willing to trade (in general in a day ahead market).
Once the bids are submitted, the pool’s regulators order the bids
from the lowest to the highest prices and create an aggregate sup-
ply curve for the sector, which is matched with aggregate electricity
demand to determine the spot prices and the dispatching order of
generators. In this setting the marginal generator is the one which
determines the clearing price in the market. One example of such a
price clearing mechanism is illustrated in figure 1.

Among the determinants of the supply curve are the number
of generation plants, their technology and the transmission lines that
connect generators with consumption centers. If there is a large num-
ber of generators with similar technology and unrestricted transmis-
sion capacity, we would expect to observe gradual changes in prices
as long as demand changes gradually. In the real world, however,
there is a big variation in technologies across power plants, some of
them better suited to supply power under specific conditions. For
instance, in order to recover their fixed costs, big plants with low
variable costs are scheduled to operate most of the time. Meanwhile,
plants with high marginal cost but low cost of capital are economi-
cally better suited to operate only during periods of peak demand.
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There are some peaking plants that work a relatively small number
of hours during the year but charge a high price for their power as a
way to cover fixed costs. If the maximum electricity demand is close
to the total generation capacity of the system, such peaking plants
will probably scheduled to operate. In such a case, electricity prices
tend to rise drastically in the face of any increase in demand.

Figure 1
Balance between demand and supply in power
markets: Shock in demand
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Sudden and drastic changes in prices that quickly revert can be
the result of a temporary surge in demand (for example, due to tem-
poral changes in temperatures) or the result of temporary drops in
supply (for example, due to temporal generators or transmission fail-
ures). These temporary movements are called the “jump” state in
this article. Demand shocks may be identified with temporal move-
ments of the demand curve to the right and the corresponding sched-
ule of higher cost generators in the system. Figure 1 illustrates this
movement: given the shock in demand, generator 6 at price P2 is dis-
patched. On the other hand, in the case of a shock on the supply side
there would be a temporal movement of the supply curve to the left.
Figure 2 illustrates this situation: if generator 4 temporarily goes off
line, generators 5 and 6 will be activated at the higher price P2. It is
even possible that because of such shocks, demand will not intersect
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the supply curve. In such a case electricity prices must be determined
exogenously from the market mechanism, either by the regulators or
by the price of exogenous power sources (i.e. the price charged by
power plants external to the pool). Although there are several mech-
anisms for pricing electricity when demand is higher than the total
capacity, generally prices are set at such a high level as to induce the
entrance of new generator plants.

Figure 2
Shock in supply
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A different kind of pattern in power prices is observed when elec-
tricity demand or supply is not exposed to extreme temporal shocks
that require most or all the generation capacity. This condition is
called in the study the “normal” state and it is characterized by the
lack of extreme jumps in prices.

As in other competitive markets, electricity prices play the role
of signals of the general conditions in the sector. Therefore it is
important to distinguish between changes in prices that represent
temporary shocks with non-lasting effects and changes in prices that
correspond more closely to the intrinsic dynamics of the market.

It is possible that exogenous variables play an important role
in the determination of prices, affecting simultaneously both compo-
nents. That is the case, for example, when there is a shortage of fuel
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or when companies exercise some kind of market power. In such cases,
neither component is independent and modeling explicitly such exoge-
nous variables is necessary to fully capture the behavior of electricity
prices. In this paper we assume that the behavior of each compo-
nent is affected by different sources and therefore we treat them as
independent. The goal of the next section is to explicitly differentiate
these two components.

3. The Model

Taking into account that the extreme jumps which revert quickly
correspond to different dynamics than the normal pattern in electric-
ity prices, we consider a model that breaks apart such components.
Specifically we express the electricity price P, as the sum of two inde-
pendent stochastic processes, one that represents the normal behavior
of prices (X;) and other that represents the effect of temporary shocks

(Yy):
Pr=X;+Y, (1)

We also assume that X; and Y; are governed by the following
stochastic differential equations:

dXt:k(a*Xt)dt-FUdBt (2)

dYt = —OzYtdt + thqt (3)

with dB; representing an increment to a standard Brownian motion
B; and dg; representing a Poisson process. Both the Poisson and the
diffusion process are assumed to be independent of each other.

Notice that X, follows an Ornstein-Uhlenbeck process, with in-
stantaneous variance o2, long-run mean a, and a speed of adjustment
k > 0. This specification of the normal pattern of prices attempts
to capture the mean reverting property which is a characteristic of
electricity prices. One straightforward extension of such specification
is to allow a to change over time; either because it is a function of
exogenous variables (such as the average price of the inputs used to
generate electricity) or because of the seasonal pattern of electricity
demand. In such a case the model would be specified with a varying
parameter a; instead of a fixed a. For the purposes of the present
study, which focusses on modeling the “jump” component of prices,
we assume that the long-run mean is constant.
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On the other hand, Y; is also specified to evolve as a mean-
reverting process, with a long-run mean of zero and reverting rate
a > 0. However, its stochastic part is defined as a Poisson error
component (dq;) with an arrival frequency parameter A and jump size
z¢. Finally, z; is assumed to be drawn from a normal distribution, with
mean p, and variance 62, independent of the diffusion and Poisson
processes.

In order to estimate the model we approximate the Poisson er-
ror component of Yy with a Markov-switching model. Consider the
following specification of (3) which involves the latent variable S;:

dYt = —OéYtdt + zt,st (4)

where

240 = 0, with probability 1 — AA# + o(At)?,
zt,1 = zt, with probability NAt + o(At)?,
Ztm =M - zt,n > 2 with probability o(At),
S¢=20,1,2,...,n is a latent variable, and

27N (., 62) is the size of the jump.

Notice that the expressions of the probabilities that govern z; g,
are obtained from the Taylor series expansion of the Poisson den-
sity; i.e. the probability of no jump in a “small” interval of time is
approximately 1 — AAt, and of one jump, AAt.

To translate this specification to a Markovian switching model
we construct a manageable transition probability matrix to define
the evolution of the state variable. In order to specify a Markov-
switching model with two states, the “normal” state with S; = 0 and
the “jump” state with S; = 1, we first assume that the probability of
more than one jump in one unit of time is negligible.? We also assume
a first order Markov-switching process for Sy, that is, the discrete
variable S; will depend only upon S;_1. In order to capture the spikes

3 In fact if data is available with high enough frequency, as is the case of
electricity prices (for instance, hourly data), we can assume that in a short period
of time only one jump may occur.
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in prices due to short-lived shocks we assume that once the state
variable indicates a jump at period ¢ it will return to the “normal”
state at period ¢t 4+ 1 with probability m 19 and that it will jump again
with probability m1; = 1 — m19. Therefore the relevant transition
probabilities for the model are Pr[S; = 0[S;—1 = 0] = mgp (that
approximates the probabilities of the Poisson distribution 1 — AAt¢)
and Pr[S; = 1|S¢—1 = 1] = m11, with the complementary probabilities
PI‘[St = 1‘515_1 = 0} = mo1 — 1- moo and PI“[St = O|St_1 = 1] =
mio =1—mi1.

Notice that in (4) the mean reverting component of Y; is not
affected by the latent variable, S;, hence there is a continuous adjust-
ment even when the temporal shock has disappeared. This charac-
teristic of the model gives some flexibility to capture possible lags in
the effect of supply and demand shocks on the behavior of immediate
future prices.

4. The Estimation Method

The proposed model contains inferences about the undistinguished
variables X; and Y%, as well as inferences about the evolution of the
state variable S;. To solve the model we can take advantage of its
state-space representation and use Kim’s (1994) filtering algorithm,
which merges switching states with dynamic models involving unob-
servable variables.

Assuming a Euler approximation to the stochastic differential
equations (2) and (4), we can write the state-spacerepresentation of
the system as follows:

Measurement Equation:

Pt = H/Bt7 (5)

Transition Equations:
X =kalAt + (1 — kAt) XAt + 0 Atey (6)
Y: = (1 — aAt)Yt,At + es, (7)

with e’;‘?N(O, 1), €s, = /.I,ZSt + 6Stet, e?N(O, 1) and St = 1,0
Or in matrix notation, and normalizing At = 1:

Bt =ps, + FBi—1+ Qs,v¢ (8)
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with

8, = ﬁﬂ JH =[11),fis, = [Mkcfgj = [(16k> (10a)]

_lo 0 _ gt
QRs, = [0 6St] and v; = LS,}

The subscripts in 15, and Qg, indicate that these expressions
depend on the unobservable switching variable Sy, whose transition
probabilities are given by:

R I

1—mopo mi1

where as before Pr[S; = 0]/S;—1 = 0] = mqo, and Pr[S; = 1|St—1 =
1] = m1;.

Kim’s algorithm is a mixture of Kalman and Hamilton filters,
and includes a “collapsing” step to avoid the explosion of possible
paths of the state vector due to the transition probability matrix. A
complete discussion of the algorithm can be found in Kim (1994) and
Kim and Nelson (1999). In this section we summarize the principal
equations of the algorithm fitted to our model.

The goal of the filter is to form a forecast of 8; based on the vector
of observations available up to ¢ — 1 (¢¢_1), but also conditional on
the random variables S; and S;_1. In terms of notation we have:

B, = ElBulr—1. S0 = . Secr = i),
and the associated mean squared error matrix is
Pt(\zt] L= El(Be = Byji—1)(Be — Buje—1)"[e—1, St = j, Se—1 = il

Conditional on S; = j and S¢_1 = i, the Kalman filter algorithm
follows the next computational steps:

(4,5) i
Biicy = i+ FB{_1ji_1,

(4,5)
Pt|7tJ17FPZ 1lt— FI+Q; Q]’

) I (4,9)
Mijt—1 = Pt — Hﬁﬂf 1
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ft| iD= HPt(\th)lH

ﬂflztd) _ ﬂ§r£])1 + Pt|t 1 [f(”)} (4:3)

tle—1l  Tee—1
(4,5) _ (1,9) 1 i,5)
Pt\f = - Pf\f 1H [ff\ ] H; )Pf|t 1’
where n)fl ) {5 the conditional forecast error of pt given ¥y_1, St = j

and S;_1 = 7; and ft‘ ©3) is the conditional variance of the forecast

error ’/§|t])1>W1th 1,5 =0,1.
Notice that each iteration of the Kalman filter produces two more

3
cases to consider per estimation of ﬂt(l t’J .

The Hamilton filter component focusses on calculating Pr[Sy,
Si—1|v¢] and Pr[Si|iy] as follows:

P?“[St = j,St,1 = i|1/)t,1] = P’I’[St = j|St = Z]

Pr[Si_1 = ilths—1] = myj - 7

Pr(S; = j,St—1 = i|iy]

_ f(pe|Se =7, 5t—1 =4, ¥e—1) - Pr[Se = 7, St—1 = i|Y—1]
F(rele—1)

2
Pr(S; = jlge] = Y Pr[Se = j, Se-1 = i)

i=1
with:

Pt|St =7, St—1=1,%t1 NN(r]t‘f,j 17 ff(|Zf] 1)

fpe, St =3, St—1 = it|ve—1) = f(pe|Se = 4, Se—1 = i, ¥4—1)
Pr(S; =j,St—1 = ilr—1],

4 The size of the transition probability matrix (M).
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2 2

f(peli—1) = ZZf(pn St =7j,8¢—1 = ils—1).

j=1i=1

where 7; is the steady state probability of S;_1 =i and m; is taken
from the transition probability matrix (9).

To avoid an explosion in the number of cases to consider, Kim
(1994) proposed the following approximation, that collapses the num-

f(lf,j) and their corresponding mean squared errors Pf(“’])

to only two cases (those corresponding to the number of states of S):

ber of terms 8

Z?:l Pr[st =7,5-1= Z|1ﬁf] Bt(rizl)

Bie =
e Pr(Sy = jlii]
pi > PriSi=j,Se=ilwd AP +(8}, 8785, -857)
tt Pr[S;=jlv:] ’

With this approximation, ﬁz‘ ; is no longer the linear projection

of B; on ; as in the pure Kalman filter. Now the algorithm is man-
ageable and Kim has showed that the loss in efficiency produced by
the approximation is only marginal. In our case, this algorithm is
used to identify two stochastic components of electricity prices and
therefore it permits us to estimate the parameters of the “normal”
electricity process without considering the noise of temporal shocks.
What follows is an application of the above model to a competitive
wholesale electricity market.

5. Application: Electricity Spot Prices in New South Wales,
Australia

In this section we show the results of applying the above model to New
South Wales’ electricity spot prices.® This market began operations
as a regional market in 1996. Later, it was integrated into the national
grid creating the Australian National Electricity Market (NEM). The
NEM operates a supply bidding mechanism that sets electricity prices
every half hour. The period studied in this analysis begins with the
integration of the national market on January 1999 and ends on May
2002 with a total of 59,835 observations.

5 Data source: http://www.nemmco.com
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Secondary markets have traditionally used average daily prices
to price futures and other derivatives in electricity markets.® Follow-
ing this practice we based our estimations on average daily prices,
which results in a total sample of 1,247 daily observations. With this
transformation we also avoid the strong intraday cyclical behavior of
the electricity market.

A complete characterization of the stochastic process of electric-
ity prices involves specifying its seasonal component as well as its
relationship with other exogenous variables that may determine its
trend, such as the average cost of the inputs. In the model we assume
that all of these elements are captured by the time varying mean (a;)
of the normal component. However, to focus on the decomposition
into “normal” and “jump” components, we estimate a; with nonpara-
metric techniques instead of explicitly assuming a specific functional
form.” Once we have estimated this time varying “mean” to which
the “normal” component is reverted, we proceed to estimate the dif-
fusion parameters (6) and (7) over the prices’ deviations from that
mean. Figure 3 shows the original and the transformed data that the
estimations of our model are based on.

Using the transformed price series we estimate the parameters
of the transition equations (6) and (7) and the probabilities of the
transition probability matrix (9). Maximum Likelihood estimates of
the parameters are shown in table 1.8

By examining the results, it seems clear that the conditional
probability of the occurrence of a jump given that there was already
a jump in the previous period, is not negligible (m11=0.75). This
means that “jumps” are significantly correlated in the NSW market,
implying that for modeling purposes such parameters must at least be
checked to see if they are different from zero. From the parameters of
the Markov transition matrix we can also compute the unconditional
probability that the process will be in a “jump” state as follows:

6 See Lucia and Schwartz 2000 for a description of the Nordic Power Exchange.

7 Specifically we follow the next three steps to transform the data: 1) We
decompose the original price series into a pseudo “normal” and a pseudo “jump”
component using Kim’s algorithm (they are called pseudo components because
they still capture some movements in a;), 2) Taking as our data the pseudo
“normal” component, we non-parametrically estimate its mean using a normal
kernel with the optimal window width h = 0.25Utn71/5 andt = 1,2...n, 3)
Finally we substract the estimated mean from the original prices.

8 The parameters estimates were obtained using a Bernt, et al. (1974) algo-

rithm and the results were robust for different starting values.
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Figure 3
Electricity Spot Prices in New South Wales, Australia
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Table 1
Estimation Results of the Model

Parameter | FEstimates | Std. err. | t values
Transition Probability Matriz

mao 3.0953 (0.9567*) 0.2157 14.349

mi, 0.9247 (0.7160%*) 0.2821 3.279
“Normal” Component

k 0.2392 0.0221 10.844

a -0.0039 0.0195 -0.202

o 0.1457 0.0050 28.926
“Jump” Component

«a 0.7509 0.0869 8.645

Lz 0.4811 0.0883 5.451

Oz 0.6101 0.0436 14.008

ML 0.168604

*Probability: ms; = exp(m};)/[1 + exp(m};)].

On the other hand, it is not surprising that the long-run mean of
the “normal” component is not significantly different from zero since
we worked with mean adjusted series. The results show that in spite
of a high reverting parameter for the “jump” component (« = 0.75),
prices do not fall back completely on the day after a jump, but follow a
gradually decreasing adjustment process. Such a result raises doubts
about the assumption that jumps have short-lived effects in other
studies (i.e. Huisman and Mahieu (2003)), and suggests the need
for considering such gradual adjustment in electricity prices. One
explanation of this result may be that after a supply failure or a
sudden demand change, the market participants are unsure about the
likelihood that such behavior could be repeated in the subsequent
periods (observation consistent with the high value of m11). As a
consequence, participants adjust prices gradually.

As part of the estimation process, the filtering algorithm also
splits electricity prices into two components, {X;} and {Y;}, and es-
timates the unconditional probability that the process will be in a
jump state at any period. The decomposition and the probabilities
are plotted in figure 4.
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Figure 4
Decomposition of Electricity Prices
and Unconditional Probabilities
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Probability that the Process is in Jump State
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A direct application of the decomposition of electricity prices is
the estimation of the “jump” component contribution to the average
electricity price during a certain period of time. Since financial in-
struments are traded according to their price per kilowatt-hour and
the amount of electricity delivered in a certain period of time, knowl-
edge about the contribution of the “jump” switching process provides
a cost estimate of having a market mechanism that allows a certain
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frequency, size and persistence of the jumps.

As an illustrative example we consider the contribution of each
component to the average monthly price of the sample over the last
four months and the average weekly price over the last two months.

ML

209102

The results of this decomposition are given in table 2.

Table 2
Estimated Decomposition of the Average

(Australian Dollars)

Electricity Price for the Year 2002

Period Observed Normal Jump
Prices Component | Component
January 25.50 24.91 0.59
February 29.53 26.61 2.92
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Table 2
(continued)
Period Observed Normal Jump
Prices Component | Component

March 25.89 25.25 0.64
April 26.59 25.74 0.84
May 74.94 28.02 46.91
April/06-April /12 25.68 25.63 0.05
April/13-April/19 25.73 25.69 0.04
April/20-April/26 | 30.87 27.37 3.49
April/27-May /03 26.97 26.94 0.03
May/04-May/10 30.91 27.60 3.32
May/11-May/17 25.72 25.73 -0.001
May/18-May/24 114.75 29.19 85.56
May/25-May/31 149.27 30.39 118.89

6. Bootstrap Simulation

We use the bootstrap method to simulate electricity prices and es-
timate their expected value in the future. In particular we are in-
terested in knowing the price component that is attributable to the
“‘jump” state in comparison with the contribution of the “normal”
state in the industry. This price decomposition may be used to evalu-
ate the benefits of reducing the size or frequency of such “jumps”.
Also, based on the previous model, the bootstrap technique pro-
vides an alternative method to estimate the price of futures and other
derivatives in the electricity market.

The bootstrap method is used mainly for estimating test statis-
tics or the distribution of an estimator through simulation techniques
that resample the real data set. Here we use the method to simulate
the electricity price pattern from decomposing the contribution of the
“normal” and “jump” components.” From the simulations we may

9 The discussion does not attempt to provide a detailed description of the
bootstrap method. For a comprehensive description of the method see, for exam-

ple, Horowitz (1999).
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calculate the expected value of the average price for future weeks or
months, the periods of time in which electricity flows are generally
traded.

The simulation is based on the Euler approximation (6) and (7).
Notice that the parametric model of the “normal” component of elec-
tricity prices (6)reduces its data generation process to a transforma-
tion of the independent random variable ;. Then a bootstrap sample
of {X*} can be directly generated by random sampling of the resid-
uals from the fitted model. That is, we estimate:

X =ka+ (1—k)X] | +oel,

where k, a and ¢ are the Maximum Likelihood (ML) estimates of the
parameters of (6) and {ef} is a random sample of the normalized
estimated residual {£,}.

In a similar way we can generate a bootstrap sample of {Y*}
taking into account that the parametric model (7) does not produce
independent errors because of the first order Markov-switching pro-
cess that governs S;. Such a bootstrap sample can be generated using
the following relationship:

Yt* = (1 - OA‘)Yttl + egf,a

where & is the ML estimate of o and {eg, } is a conditional sample of
the estimated residual {ég;}.

To deal with the dependence of the fitted errors we performed
a conditional bootstrap sample of the residuals as follows. First, we
identify a jump in any particular period using the estimated uncondi-
tional probabilities of observing a jump obtained from Kim’s smooth-
ing algorithm (see figure 4). If this probability is greater than that
deduced from the estimated parameters, we consider that there was a
jump in that particular period. In terms of notation there is a jump
if the following condition applies:

P(Sp=1T;) > 71 = %

2 —moo — m11

where P is obtained from the smoothing algorithm and mgg and m11
are the ML estimates of mgg and m1; respectively.

Once we identified the periods in which a jump in prices occurred,
we classified the estimated residuals in two subsamples: one that
collects all the residuals that follow a jump, a sub-sample called J;,
and another that collects all the residuals that do not follow a jump, a
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sub-sample called J,,. Then we generated bootstrap samples of {e, }
by randomly sampling these two sets conditional on the state at ¢t —1
(S;—1 = 0 in the “normal” state or S;_; = 1 in the “jump” state) as
follows:

i _Jei€dn i S =0,
St Y ered; if S =1

For comparative and illustrative purposes we estimated by boot-
strap simulation the expected average price of electricity on October
1st, 2001, for energy to be delivered during the same periods as in ta-
ble 2. As before, we assumed that the mean of the normal component
is given exogenously and computed the decomposition of electricity
prices based on deviation from that mean. To estimate the expected
monthly and weekly average prices, we simulated 10,000 paths of elec-
tricity prices for the period between October, 2001 and May, 2002.
The expected average price by component and the probability inter-
val for the maximum average price is reported in table 3. From the
same simulations we computed the probability density of the average
electricity prices for a specific month and week, the result of which is
shown in figure 5.

Figure 5
Comparison of the Estimated Probability Density of the Monthly
and Weekly Average Electricity Prices on October 2001
0007
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Table 3

Estimated Decomposition of Expected Average Prices

for the Year 2002 on October 2001
(Australian Dollars)

Period FExpected Normal Jump Participation Mazimum Price
Average Prices | Component | Component | Jump Compon. | at 95% confidence
o) (B) (©) (c/A) D) | (0/4)
January 28.658 25.114 3.544 0.141 39.080 1.364
February 29.672 25.986 3.686 0.142 40.880 1.378
March 29.342 25.653 3.689 0.144 39.820 1.357
April 29.823 26.029 3.794 0.146 41.140 1.379
May 32.114 28.056 4.058 0.145 43.740 1.362
Average 29.922 26.168 3.754 0.143 40.932 1.368
April/06-April/12 29.380 25.643 3.736 0.147 49.728 1.693
April/13-April/19 29.666 25.986 3.680 0.142 49.832 1.680
April/20-April/26 30.221 26.368 3.852 0.146 50.976 1.687
April/27-May/03 30.765 26.815 3.951 0.147 51.964 1.689
May/04-May /10 31.170 27.332 3.838 0.140 51.288 1.645
May/11-May/17 32.190 27.952 4.238 0.152 54.980 1.708
May/18-May/24 32.512 28.463 4.049 0.142 54.720 1.683




Table 3

(continued)
Period Ezxpected Normal Jump Participation Mazximum Price
Average Prices Component | Component | Jump Compon. at 95% confidence
(4) (B) (©) (C/A) (D) (D/A)
May/25-May/31 33.087 28.946 4.141 0.143 55.604 1.681
Average 31.124 27.188 3.936 0.144 52.387 1.683

Note: The mean is assumed to be given.
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According to the simulation results, the percentage of the ex-
pected price attributable to the “jump” component is around 14%
for both monthly and weekly average prices. This average contribu-
tion appears low compared to “jumps” that rise up to 10 times the
average price in a single day. Also, if we compare the expected av-
erage price with the observed average in table 2, we notice that May
2002 was an exceptionally high price period, with the highest prices
primarily concentrated in the last two weeks of the month. Looking
at the estimated confidence interval of the average prices, we find
that as an average there is a 95% probability that average prices will
not increase by more than 37% of the expected monthly value and by
not more than 68% of the expected weekly average. These expected
average prices appear to be maintained regardless of the starting date
of the simulation, provided that there is enough time to dissipate the
initial shock in prices.

7. Conclusion

This study highlights the necessity of decomposing the movement of
electricity prices into two components: one driven by normal market
conditions and the other that captures the effect of supply failures
and/or constraints, or sudden increases in demand. The proposed
model treats the stochastic process of each component as independent
from the other, each one with its own mean reverting parameter. This
study also maintains that considering the jumps and spikes in prices as
a jump switching process in which the effects do not disappear quickly,
bears certain advantages, since, technologically speaking, it is natural
to consider two states, the failure and the normal state, in electricity
markets. Technically this approach overcomes identification problems
by capturing the big jumps with low frequency instead of the small
jumps with high frequency, as is usually the case in jump-diffusion
type processes.

We applied the model to New South Wales’ electricity spot prices
and found all the parameters of the model to be statistically signifi-
cant. One of the most important results is that the estimated mean
reverting parameter of the jump component does not completely elim-
inate the effect of a jump in the next period. There is also evidence
that jumps are not independent but correlated in this market. These
results contrast with the assumptions of other studies, suggesting a
need to explicitly test the mean reverting speed of the jumps and their
independence. With respect to the decomposition of the observed av-
erage electricity prices in the NSW electricity market, we found that
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in May 2002 the jump component rose up to 70% above the average
of the normal component, and up to 300% in the last week of the
same month.

The bootstrap simulation technique was also implemented to es-
timate the expected average price over a future month or week. It was
found that, as an average, the expected contribution of the “jump”
component in the expected average price is around 14%. On the other
hand it was estimated that there is a 95% probability that average
prices will not increase by more than 37% of the expected monthly
value and by no more than 68% of the expected weekly average.

Finally, although the model deals with the identification of the
“normal” and “jump” components in prices, seasonality is another
factor that is not treated explicitly in this study. The assumption
from which we construct our decomposition is that prices do not fol-
low a time varying mean to which they revert, but that there is a
fixed long-run mean in the “normal” component. This assumption
is obviously not true for markets with strong seasonality or in sit-
uations in which exogenous variables play an important role in the
price determination, such as the price of natural gas. However the
model can be extended to explicitly include such components, allow-
ing functional specification of the time varying mean of the “normal”
component. In the same way the model can be extended in several
directions, for example including time dependent probabilities or a
stochastic volatility specification.
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