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1 . M o tiv a tio n

Consider the following situation. Initially, an agent faces an even
1 1lottery: with probability she wins 5 pesos and with probability2 2

1she wins 10 pesos. Consider a shift in probability of from outcome3
\wining 5 pesos" to outcome \wining 6 pesos" :

st n dO u tco m es 1 L o ttery S h ift in p ro ba bility 2 L o ttery
1 1 15 -2 3 6

1 16 0 + 3 3

7 0 - 0

8 0 - 0

9 0 - 0
1 110 -2 2

Which shift in probability from the second lottery might lead
to a third lottery indi®erent to the ¯rst one. For some preferences,

1an answer might be a shift of from outcome \wining 10 pesos" to4
outcome \wining 8 pesos" :

st n dO u tco m es 1 L o ttery S h ift in p ro ba bility 2 L o ttery
1 15 -6 6
1 16 -3 3

7 0 - 0
18 0 + 04

9 0 - 0
1 1 110 -2 4 4

Thus, from the initial lottery, the ¯rst shift in probability is com-
pensated, thus comparable with the second shift in probability, al-
though 5, 6, 8 nor 10 are indi®erent outcomes. Actually, even if the
answer should be \none" , the question makes sense.

Any preferences over lotteries induces preferences over shifts in
probabilities. We present a complementary approach to expected

1utility theory by presenting a characterization of expected utility

1 R eferen ces o n th e su b ject a re, fo r in sta n ce, H a m m o n d (1 9 9 8 ), K rep s (1 9 8 8 ),

a n d W a k k er (1 9 8 8 ).
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where the independence axiom deals with preferences de¯ned over
shifts in probabilities.

The relevance of our approach is three-fold. First it makes it
clear that the cardinal nature of expected utility is only a behavioral
characteristic rooted in the independence axiom and has no normative
appeal. Second, our proof is entirely constructive, which provides
insight into the way the independence axiom leads to expected utility.
Third, we deal strictly with preferences de¯ned over simple lotteries.

Moreover, applying Thales's Theorem, we relate the fact that
indi®erence \curves" are straight lines with weighted additive geom-
etry in the Marshak-Machina triangle, thus providing a geometric
interpretation of expected utility.

2 . P r e fe r e n c e s O v e r S h ifts in P r o b a b ilitie s

Let C = f a ;:::;a g be the set of ¯nite outcomes and L a lottery1 n

de¯ned over C . Given a lottery L which assigns to event a a proba-
bility larger than ® and to event b a probability smaller than 1 ¡ ® ,

b® 2 [0;1 ] , L (® 4 ) is the lottery where the probability assigned toa
outcome a has been lowered by an amount of ® and the probabil-
ity assigned to outcome b has increased by an amount of ® . For
instance, if C = (a ;b;c;d ;e ) , L = (:1; :4; :3; 0; :2) and ® = :1, then

bL (® 4 ) = (0; :5; :3; 0; :2) . The concatenation of the operation is de-a 0b 0 bnoted by L (® 4 + :::+ ® 4 ) .0a a
The space of preferences over simple lotteries is denoted by L ,

>a preference relation in L is given by . Given a lottery L , let p a»
(p ) be the probability of a (b) in the lottery L , and D = f (® ;a ;b) 2b L

>[0;1 ] ¤ C ¤ C j ® · minf p ;1 ¡ p g g . Consider a preference relation ina b »
L , we de¯ne the induced preference relation over shifts in probabilities
> ¢ as follows: for any L and (® ;a ;b) in D L»

b > ¢ d b > d[® 4 ¯ 4 for L ] if and only if [L (® 4 ) L (¯ 4 ) ] :a » c a » c

> > ¢If the binary relation is complete and transitive, so is . To» »
see it, think of the contrapositive statement.

These are heavy notations. They emphasize the richness of pref-
erences over lotteries and how restrictive the independence axiom is.
It say that the ordering of shifts in probabilities is independent of its
weight and the original lottery.
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> ¢D E F IN IT IO N 1 . T h e p referen ce rela tio n sa tis¯ es th e in d epen d en ce»
a xio m if, fo r a ll L , (® ;a ;b) a n d (¯ ;c;d ) in D L

b > ¢ d b > ¢ d® 4 ¯ 4 f o r L if a n d o n ly if (° ® )4 (° ¯ )4a » c a » c

0 0fo r a ll L a n d ° > 0 w h ere ° ® a n d ° ¯ belo n g to D a n d D .L L

The equivalence holds with strict preferences or indi®erence.
Consider the concatenation such that

b dL (® 4 + ¯ 4 ) » La c

It tells us in which proportion shifts in probabilities from a to
b and from c to d keep the agent indi®erent. By independence this

®marginal rate of substitution, , is constant (independent of the orig-¯

inal lottery and of the size of the shift) . Quoting Machina (1987) ,
Hammond (1998) discusses how ratios of utility di®erences are equal
to the marginal rates of substitution between probability shifts, which
are constant when indi®erence curves are linear. Although it is some-
how indirect to capture a property about preferences by dealing with
the utility representation, it is an illuminating way to explain the
cardinal nature of expected utility. Thus, we know that indi®erence
curves are indeed straight lines. In our focus, in contrast, the constant
marginal rate of substitution between probability shifts is a restric-
tion put on the preferences over shifts in probabilities. It is clearly
a choice behavior pattern, thus, our approach agrees with Weymark
(2005) in the sense that cardinality has no normative appeal.

We also need a continuity condition to state our theorem.

>D E F IN IT IO N 2 . T h e p referen ce rela tio n is co n tin u o u s if fo r a n y L ,»0L a n d ¯ n a l o u tco m es a a n d b

b > 0 0> bf ® 2 [0;1 ] : L (® 4 ) L g a n d f ® 2 [0;1 ] : L L (® 4 )ga » » a

a re clo sed .

>T H E O R E M 3 . C o n tin u o u s p referen ces in L a re rep resen ted by a n»
> ¢expected u tility fu n ctio n if a n d o n ly if in d u ced p referen ces sa tisfy»

th e in d epen d en ce a xio m . M o reo ver, fu n ctio n s o bta in ed fro m po sitive
a ± n e tra n sfo rm a tio n s o f th e u tility fu n ctio n a lso rep resen t th ese p ref-
eren ces.
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The proof of the theorem is entirely constructive, which allows to
us exhibit, both geometrically and analytically, how the independence

2axiom leads to expected utility.

F ig u re 1
A d d itive sh ifts in p ro ba bility

P R O O F . The complete proof is in the appendix. There, we adapt
usual arguments to prove that:

1 . There exists a worst lottery, L , wich is a degenerated lottery
and assigns probability 1 to event, say, a ,1
2. There exists a preferred lottery, L , wich is degenerated and
assigns probability 1 to event, say, a ,n

a n3. For all lotteries L , there exists a lottery L (® 4 ) indi®erentL a 1
to L , and the higher ® is, the greater the preference for L .L

Thus, assigning to all lotteries L in L the utility u ´ ® isL L

always feasible and allows us to represent preferences.
Then u ´ 0, u ´ 1 and for all degenerated lotteries L whicha a1 n

a nassign probability 1 to a , let u ´ ® where L (® 4 ) » L .i a i ii a 1

2 W e d o n o t n eed to p rov e th a t th e fu n ctio n w h ich rep resen ts th e p referen ces
is lin ea r a n d rely o n th e resu lt w h ich sta tes th a t a u tility fu n ctio n is lin ea r if a n d

o n ly if it h a s a n ex p ected u tility fo rm .
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a nMoreover, since L (® 4 ) » L , the shift in probability fromi a 1
a nL = (0;:::;1;:::;0) to L (® 4 ) = (1 ¡ ® ;:::;0;:::;® ) indicates thati i ia 1

the constant rate of substitution between probability shifts which
keeps the agent indi®erent with respect to L , is the following: for
any lottery, if the probability assigned to a (i 6= 1;n ) is lowered byi

p , to compensate the agent the probability assigned to a has toi n

be increased by p ¤ ® and the probability assigned to a has to bei i 1

increased by p ¤ (1 ¡ ® ) .i i

Figure 1 displays the geometry of the analysis in the Marshak-
a 03Machina triangle when n = 3, where L (® 4 ) is denoted by L . The2 a 1

indi®erence line of the left hand triangle exhibits the constant rate
of substitution. By construction a 2a = 1, and we choose c such that

0 0a 2c = p (= L h in the right hand triangle) , L f = ® and L b = 1¡ ® .2 2 2

By Thales' Theorem:

a 2c a 2e 0= (in triangle a2;a;L ) ;0a 2a a 2L

a 2e eg 0= (in triangle a2;L ;f);0 0a 2L L f

a 2e d e 0= (in triangle a2;b;L ) :0 0a 2L bL

Thus eg = p ® and d e = p (1 ¡ ® ) .2 2 2 2

The right hand triangle exhibits the additive nature of the shifts
in probabilities. It is the geometric interpretation of the expected
utility form of the function which represents the preferences, since

00 3L L = p + p ® = p u + p u + p u .3 2 2 3 3 2 2 1 1

We now see analytically how these constant shifts in probability
is performed by the independence axiom. Moreover, it is performed
additively for a , . . . . , a , which explains the expected utility form2 n ¡ 1
of the utility function.

We consider non degenerated-lotteries L and compute ® . AllL

lotteries L = (p ;:::;p ) 2 L can be expressed as the concatenation1 n

a a2 nL (p 4 + :::+ p 4 ) = L :2 na a1 1

a a2 nSince by the de¯nition of ® , 14 » ® 4 for L , independence2 2a a1 1

implies

3 W e d o n o t n eed to d ea l w ith in d u ced p referen ces to d ev elo p th e g eo m etric

in terp reta tio n .
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a a a a a2 n n 3 nL (p 4 + :::+ p 4 ) » L (p ® 4 + p 4 + :::+ p 4 ) :2 n 2 2 3 na a a a a1 1 1 1 1

Repeating the argument for i = 3, . . . , n ¡ 1 leads to
a a an 3 nL (p ® 4 + p 4 :::+ p 4 )2 2 3 na a a1 1 1

a a an n n» L (p ® 4 + p ® 4 + :::+ p 4 )2 2 3 3 na a a1 1 1

:::

a a a2 n nL = L (p 4 + :::+ p 4 ) » L ((p ® + :::+ p )4 ) :2 n 2 2 na a a1 1 1

Since ® = 1, the probability distribution of L ((p ® + ::: +n 2 2
a np )4 ) isn a 1

n nX X
(1 ¡ (p ® );0;:::;0; (p ® ) ):i i i i

i= 2 i= 2

Remember that u = ® = 0 and u = ® = 1. Hence thea 1 a n1 nP Pn n
utility associated with L is u ´ ® = (p ® ) = (p ® ) ;L L i i i ii= 2 i= 1
namely

nX
u = (p u ) :L i i

i= 1

This utility function has the expected utility form. Obviously all
positive a±ne transformations also represent the preferences.

3 . C o n c lu d in g R e m a rk s

Now, the set of ¯nal outcomes C is a continuous interval in < . A
lottery L is a probability distribution over C . The space of compound

clotteries is L . Suppose that L has the same probability distribution
as ¼ L + ¼ L + :::+ ¼ L , a compound lottery over simple lotteries1 1 2 2 l l

Lc 2L , L , . . . and L in L . Then, L (® 4 ) is the lottery where the1 2 l L 1
weight given to L has been lowered by ® · ¼ and the weight given1

to L has been increased by ® .2

Given a lottery L , let p (p ) be the probability of L (L ) in the1 2 1 2

lottery L , and

D = f (® ;L ;L ) 2 [0;1 ] ¤ C ¤ C j ® · min f p ;1 ¡ p g g :L 1 2 1 2
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For any (® ;L ;L ) in D , we de¯ne the induced preference relation1 2 L
> ¢ as follows»

L L L L> ¢ >2 4 2 4[® 4 ¯ 4 for L ] if and only if [L (® 4 ) L (¯ 4 ) ] :» »L L L L1 3 1 3

The independence axiom is rephrased.

> ¢D E F IN IT IO N 4 . T h e p referen ce rela tio n sa tis¯ es th e in d epen d en ce»
a xio m if fo r a ll L a n d (® ;L ;L ) in D1 2 L

L L L L> ¢ > ¢2 4 2 4® 4 ¯ 4 f o r L if a n d o n ly if (° ® )4 (° ¯ )4» »L L L L1 3 1 3

0 0fo r a ll L a n d ° w h ere ° ® a n d ° ¯ a re in D a n d D .L L

The independence axiom states that

L L L L> ¢ > ¢1 2 1 2® 4 ® 4 for L if and only if (° ® )4 (° ® )4» »L L L L

0 0for all L and ° well de¯ned. When ° ® = 1 and L = L , the reader has
recognized the usual (strong) independence axiom de¯ned on prefer-
ences over lotteries. Now, if these preferences are also continuous,
they are represented by an expected utility function. Finally, when
preferences are represented by an expected utility function, it is easy
to check, as in the ¯rst part of the proof of our theorem, that the in-
dependence axiom for induced preferences (de¯nition 4) holds. Thus,
our approach is consistent with the approach of Von Neuman and
Morgenstern (1944) when dealing with compound lotteries.
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A p p e n d ix

>P R O O F .() ) Suppose that all preferences in L are represented by an»
expected utility function u (:) . Thus, for all a in C , there exists a ¯-iP n
nite real number u such that u (L ) = p u for all L = (p ;:::;p ) .i i i 1 ni= 1
Without loss of generality, since all functions reached from a±ne
transformation of the utility function also represent preferences, a ,1
. . . , a are positive real numbers. Thus, when 0 · ® · p · 1 andn l

0 · ¯ · p · 1,j

a mu (L (® 4 ) ) = p u + :::+ (p ¡ ® )u + :::+ (p + ® )u + ::::+ p u ;1 1 l l m m n na l

and

a ku (L (¯ 4 ) ) = p u + :::+ (p ¡ ¯ ) u + :::+ (p + ¯ ) u + ::::+ p u :1 1 j j k k n na j

a > ¢ a k a a km mSuppose ® 4 ¯ 4 for L , i. e. , u (L (® 4 ) ) ¸ u (L (¯ 4 ) ) ,a » a a aj jl l

namely

a a kmu (L (® 4 ) ) ¡ u (L (¯ 4 ) ) ¸ 0 , ¡ ® u +® u +¯ u ¡ ¯ u ¸ 0;l m j ka a jl

, ° (¡ ® u + ® u + ¯ u ¡ ¯ u ) ¸ 0 forall;l m j k

° > 0 independently of the original lottery:

0 a 0 a kmThus, whenever L (° ® 4 ) and L (° ¯ 4 ) are well de¯ned,a a jl

a > ¢ a k 0m° ® 4 ° ¯ 4 for all L . Hence, induced preferences satisfy thea » a jl

independence axiom. Continuity is direct since expected utility is
continuous in probabilities.

(( ) S T E P 1 . O n e o f th e d egen era ted lo tteries is th e w o rst a m o n g a ll
lo tteries, a n o th er o n e is th e best o n e.
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>Since is a preference relation over L , degenerated lotteries can»
be ordered from worst to best. Let L be the worst (or one of the
worst) degenerated lottery which assigns probability 1 to, say, a and1

L be the best (or one of the best) degenerated lottery which assigns
probability 1 to, say, a .n

>All degenerated lotteries L L where a is assigned probability 1i»
a ican be reached as L = L (14 ) ; thusa 1

a i > ¢ a 114 14 (1)a » a1 1

All lotteries L = (p ;:::;p ) in L can be reached from a sequence1 n
a a2 nof lotteries L L , L L (p 4 ) , . . . , L L (p 4 ) = L and by1 = 2 = 1 2 n = n ¡ 1 na a1 1

> >(1) and independence, at all iterations i, L L ; thus L L byi+ 1 i» »
transitivity of the preferences. Hence L is the worst (or one of the
worst) lottery in L .

A similar argument establishes that L is the best (or one of the
best) lottery in L .

a j ¢ a 0 0iS T E P 2 . If ¯ 4 Â ¯ 4 fo r so m e L a n d ¯ , th en fo r a ll ® , ® 2a ai i
a j 0 a j 0[0;p ] , ® 4 Â ® 4 if a n d o n ly if ® > ® fo r a ll L .i a ai i

0Without loss of generality, let ® > ® , i. e. ,

a j 1 0 a j 1 0 a jL (® 4 ) = L ((® ¡ ® )4 ) where L ´ L (® 4 ) :a a ai i i

a j ¢ a 0iSuppose ¯ 4 Â ¯ 4 for some L and ¯ , by independence fora ai i

any L we have

a j 1 0 a j 1 0 a i 0 a jL (® 4 ) = L ((® ¡ ® )4 ) Â L ((® ¡ ® )4 ) = L (® 4 )a a a ai i i i

a j 4 0 a ji:e:; ® 4 Â ® 4a ai i

0With ® · ® , the argument proves the contrapositive statement.
a nS T E P 3 . F o r a ll L 2 L th ere exists ® 2 [0;1 ] su ch th a t L (® 4 ) » L .a 1

If L » L then ® = 0 and if L » L , ® = 1.
We consider now that L Â L Â L . Suppose there is no such ®

for L . By Step 2, we know that the strictly larger ® is, the strictly
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a a an n nbetter L (® 4 ) is. Moreover L = L (14 ) Â L Â L = L (04 ) ,a a a1 1 1

thus:
0 a n) either there is one ® 2 [0;1 ] such that L (® 4 ) Á L for alla 10 a 0n0 · ® · ® and L (® 4 ) Â L for all 1 ¸ ® > ® ; continuity woulda 1

b > 0not hold in this case since, f ® 2 [0;1 ] : L (® 4 ) L g =] ® ;1 ] is open;a »0 a n) or there is one ® 2 [0;1 ] such that L (® 4 ) Á L for all 0 ·a 10 a 0n® < ® and L (® 4 ) Â L for all 1 ¸ ® ¸ ® ; in this case con-a 1
> b 0tinuity would not hold since, f ® 2 [0;1 ] : L L (® 4 )g = [0;® [ is» a

open.




